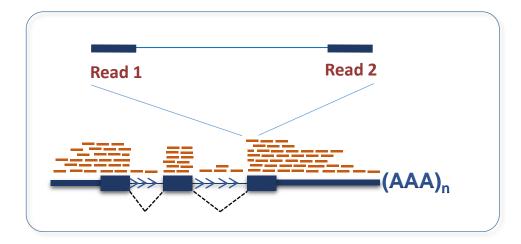

RNA-seq 101

Sep 23, 2019

Study transcription (because we can)

What is RNA-seq



reads CCTTCNCACTTCGTTTCCCAC TTTTTNCAGAGTTTTTTCTTG GAACANTCCAACGCTTGGTGA GGAAANAAGACCCTGTTGAGC CCCGGNGATCCGCTGGGACAA GCAGCATATTGATAGATAACT CTAGCTACGCGTACGCGATCG CATCTAGCATCGCGTTGCGTT CCCGCGCGCGCTTAGGCTACTCG TCACACATCTCTAGCTAGCAT CATGCTAGCTATGCCTATCTA

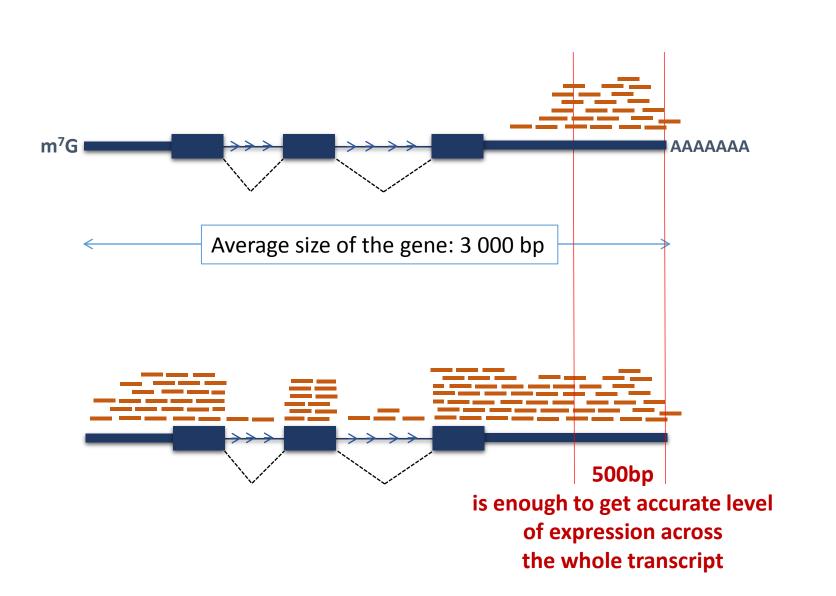
http://www.biostat.wisc.edu/bmi776/lectures/rnaseq.pdf

RNA-seq alignment and quantification

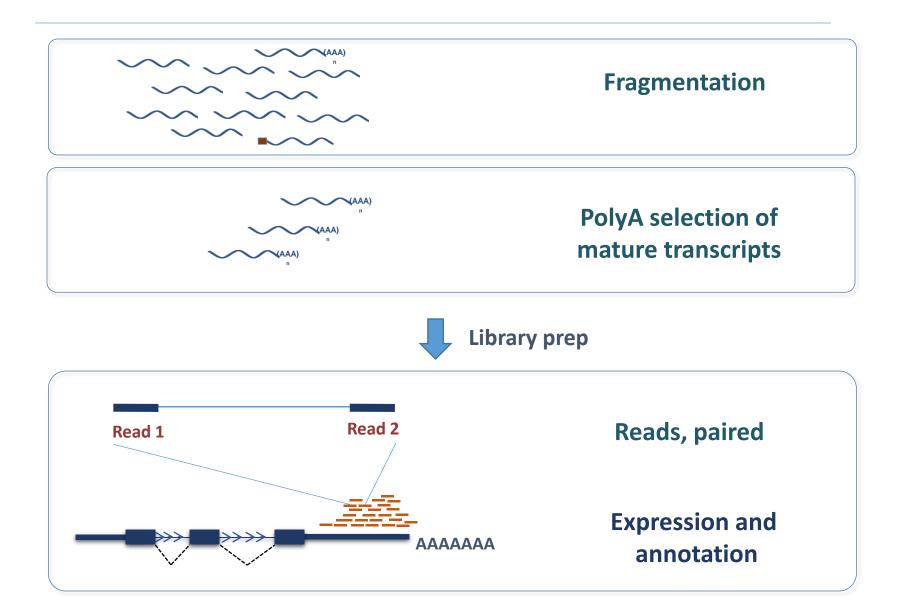
- Reads are mapped (or aligned) to genome
- Expression is quantified based on genome annotation: a map of where the genes are located in the genome

Gene expression table

1 title	Ctrl Ohrs rep1	Ctrl Ohrs rep2 (Ctrl 1hrs rep1	Ctrl 1hrs rep2	Ctrl 2hrs rep1	Ctrl 2hrs rep2	Ctrl 4hrs rep1	Ctrl 4hrs rep2 Ctrl	6hrs rep1 Ct	trl 6hrs rep2 [DI Ohrs rep1 DI	0hrs rep2 DI	1hrs rep1 E
2 treatment		~~~~			~~~~	~~~~		Ctrl Ctrl	Ct		DI DI	DI	
3 ENSMUSG0000000001	923		305				522		347	475	463	714	355
4 ENSMUSG0000000003	0	0	0	0	0	0	0	0	0	0	0	0	0
5 ENSMUSG0000000028	29	26	13	30	6	10	2	3	0	0	6	27	8
6 ENSMUSG0000000037	5	1	2	0	0	0	0	1	0	0	0	0	0
7 ENSMUSG0000000049	0	0	0	0	0	0	0	0	0	0	0	0	0
8 ENSMUSG0000000056	435	316	119	212	54	105	12	23	39	60	188	168	163
9 ENSMUSG0000000058	148	142	82	186	60	95	31	49	40	36	122	214	110
10 ENSMUSG0000000078	12109	8717	27631	52634	24103	51526	22181	24186	18669	20819	3523	8595	21196
11 ENSMUSG0000000085	83	68	16	30	13	15	16	16	14	19	62	49	28
12 ENSMUSG0000000088	1277	1069	586	824	384	938	523	722	379	495	730	526	413
13 ENSMUSG0000000093	1	2	4	0	0	0	0	0	0	0	0	4	0
14 ENSMUSG0000000094	0	0	0	0	0	0	0	0	0	0	0	0	0
15 ENSMUSG0000000103	0	0	0	0	0	0	0	0	0	0	0	0	0
16 ENSMUSG0000000120	0	0	0	0	0	0	0	0	0	0	0	0	0
17 ENSMUSG0000000125	0	0	0	0	0	0	0	0	0	0	0	0	0
18 ENSMUSG0000000126	0	0	3	0	0		0	0	2	1	2	0	0
19 ENSMUSG0000000127	415	286	100	242			122		78	64	114	471	128
20 ENSMUSG0000000131	530	503	242				232		158	248	272	398	195
21 ENSMUSG0000000134	1088	888	360	423			261	295	268	767	561	954	316
22 ENSMUSG0000000142	0	0	0				0	0	0	0	0	0	0
23 ENSMUSG0000000148	111	80	21	50	26		8	21	12	16	77	108	16
24 ENSMUSG0000000149	1089	1395	426		235		85		38	49	523	734	476
25 ENSMUSG0000000154	9	12	0	5	4	12	2	6	1	4	0	0	0
26 ENSMUSG0000000157	5	3	3	9	3	8	2	2	0	4	6	0	1
27 ENSMUSG0000000159	0	0	0	0	0	0	0	0	0	0	0	0	0
28 ENSMUSG0000000167	4	5	3	0	2	1	3	6	0	0	0	0	0
29 ENSMUSG0000000168	205	125	73				33		18	37	118	142	63
30 ENSMUSG0000000171	110	83	40				37		29	36	105	88	55
31 ENSMUSG0000000182	0	0	0	0	0	-	0	0	0	0	0	0	0
32 ENSMUSG0000000183	0	0	0	0	0		0	1	0	0	0	0	0
33 ENSMUSG0000000184	5147	4766	2571	5587	5149		15481		16075	17627	329	678	548
34 ENSMUSG0000000194	891	675	237	429			202		220	204	329	692	322
35 ENSMUSG0000000197	0	0	0	0	0	0	0	0	0	0	0	0	0

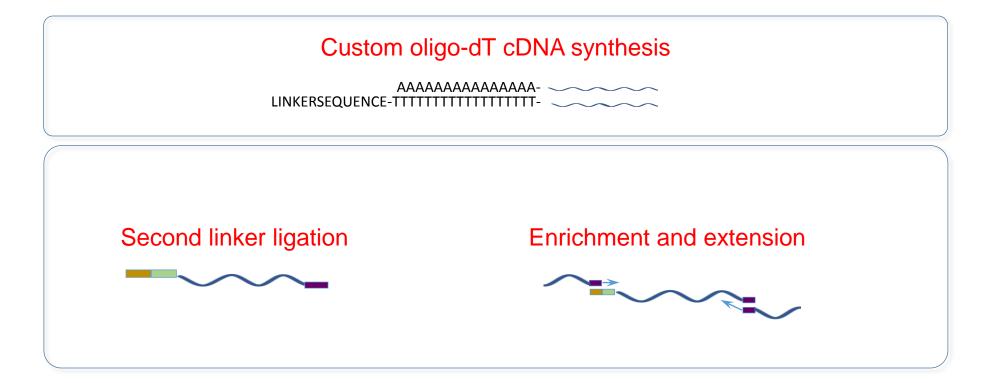

Main types of RNAs

- rRNA ribosomal RNA: 80% of the cell RNA
- tRNA transfer RNA: 15% of the cell RNA
- mRNA messenger RNA for protein coding genes
- Other RNAs: miRNA, IncRNA, ...
- Some of the RNAs are short: tRNA, miRNA, ... and are not getting into normal RNA-seq

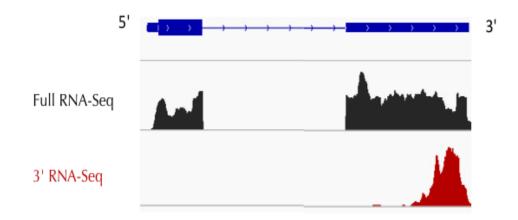

Two main approaches for RNA selection

- polyA selection: most standard, relatively cheap and easy protocol, selects mRNAs and some non-coding RNAs
- riboZero: depletes rRNA, works better for degraded RNA, captures all long RNAs

Going after gene expression only

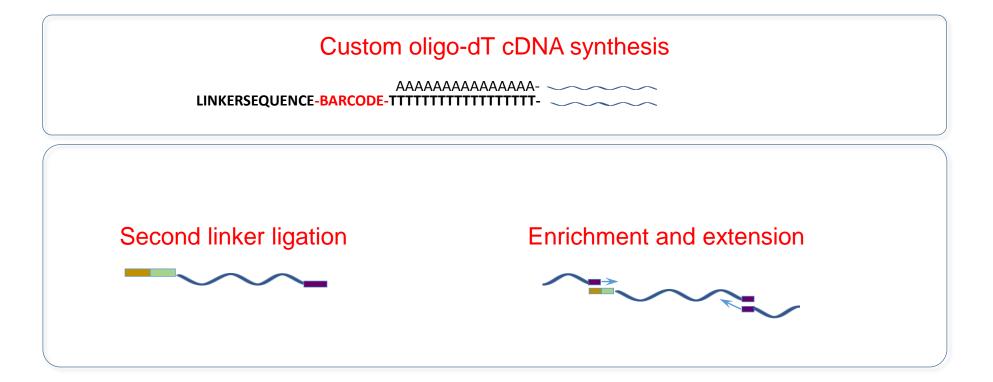


3'end RNA-Seq pipeline

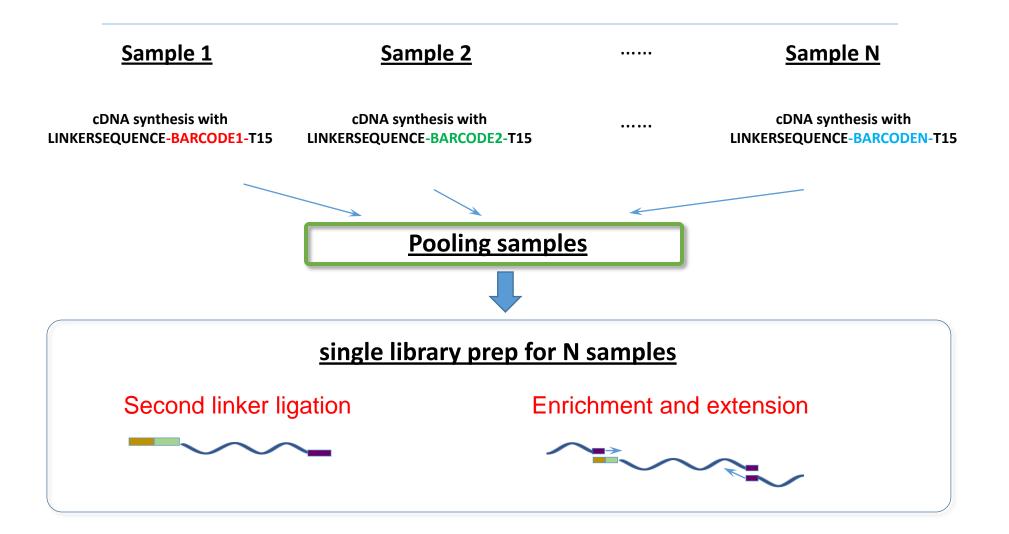


RNA specific library prep

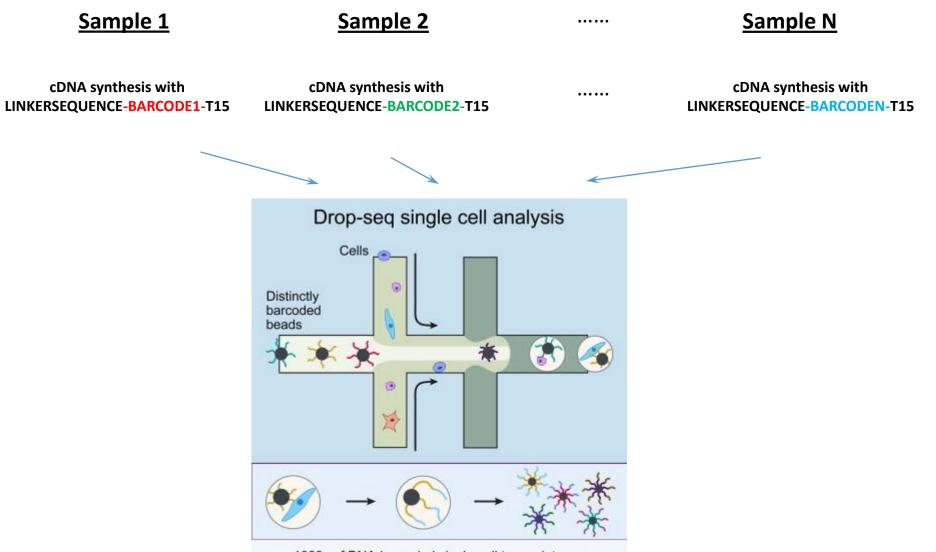
Starting from fragmented RNA



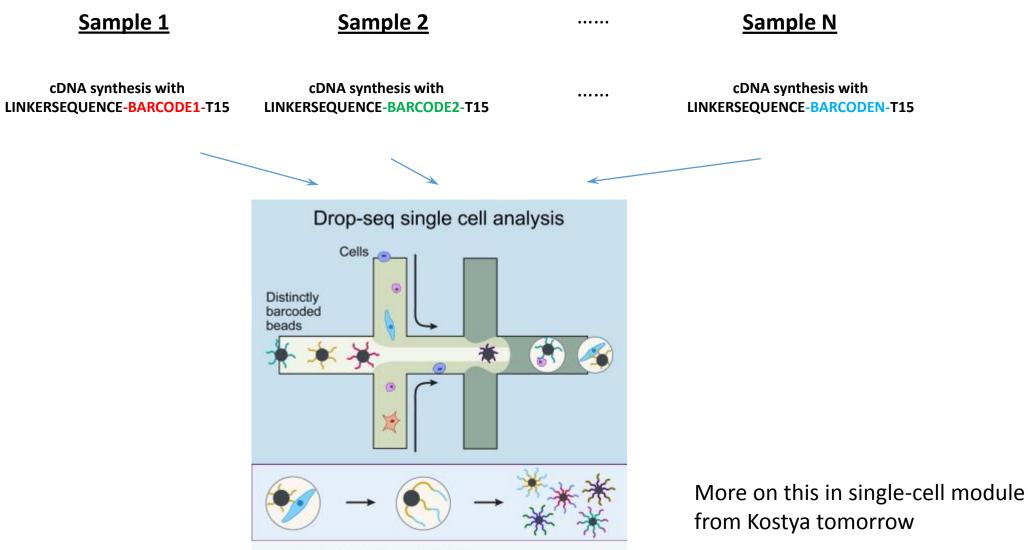
3' vs full RNA-seq data



Early Barcoding Strategy


Starting from fragmented RNA

Sensitivity/throughput improved N-fold by early pooling



If you use microfluidics, N can be very large and pooling can be automatic!

1000s of DNA-barcoded single-cell transcriptomes

If you use microfluidics, N can be very large and pooling can be automatic!

1000s of DNA-barcoded single-cell transcriptomes

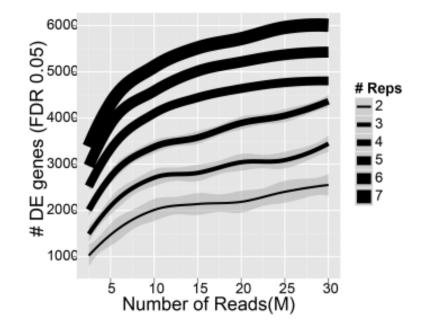
Sequencing: HiSeq 2500 ->HiSeq 4000 -> Hiseq X

- Output is in millions of reads
- Reads are typically of 50bp and 100bp
- Single end or paired end

To run sequencing you have to fill flow cell:

- Rapid Run Mode:
 - Flow Cell consists of two lanes,
 - ~120 M reads from each lane
- Productivity Mode:
 - Flow Cell Consists of 8 lanes
 - ~200-250M reads from each lane

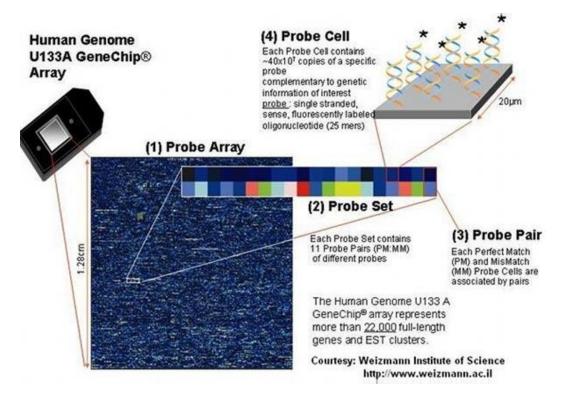
Sequencing depth/replication


The more the merrier!

More than 60M reads is almost never needed

15-20M reads per sample is good sequencing depth

Even 3-4 million is enough to estimate differential expression well


Usually it's better to increase the number of biological replicates instead of library depth

Number of differentially expressed genes increases as sequencing depth increases

Measuring gene expression using microarrays

- Instead of sequencing, expression is measured via hybridization and fluorescence
- Can be 50k to 1M probes per array
- Probes should be annotated: what genes they are assigned to
- Were developed earlier than RNA-seq but still used today
- Can measure only predefined things

