GeneQuery: Making non-trivial statements

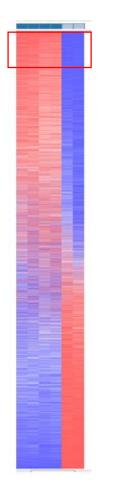
Max Artyomov, Sep 23, 2019

Systems Biology can actually be useful tool

Part I: getting comfortable "jumping" between the datasets

So, you've got your RNA-seq....

So, you've got your RNA-seq....


So, you've got your differentially expressed genes...

So, you've got your RNA-seq....

So, you've got your differentially expressed genes...

So, you've got your differentially regulated pathways...

So, you've got your RNA-seq....

So, you've got your differentially expressed genes...

So, you've got your differentially regulated pathways...

What's next?

Single gene follow-up: GEO profiles tool

https://www.ncbi.nlm.nih.gov/geoprofiles/

① ▲ https://www.ncbi.nlm.nih.gov/geoprofiles/?term=īl12b	120% C ⁴ C ⁴ Coexisting Liquid Phases Underlie Nucleolar	Subcompartments 🔸 🏠 💼 🔍
S NCBI Resources 🖸	How To ♡	omov <u>My NCBI Sign Out</u>
GEO Profiles	GEO Profiles II12b Search Create alert Advanced	h
Gene symbol Customize	Summary - 20 per page - Sort by Subgroup effect - Send to: - Filters: Manage Filter	
Gene keyword Customize Organism	Search results Profile data Items: 1 to 20 of 4285 <<	ta 🤎
Customize Gene ontology Customize Differential expression	 II12b - Macrophage-restricted interleukin-10 receptor deficiency effect on colonic resident macrophages Annotation: II12b, interleukin 12b Organism: Mus musculus Reporter: GPL6246, 10375331 (ID_REF), GDS5668, AF128214, AF128215, BC103608, 	۲
Up/down genes DataSet keyword Customize GEO accession	BC103609, BC103610, BC103614, M86671, chr11:44400063-44414033 (SPOT ID) DataSet type: Expression profiling by array, transformed count, 5 samples ID: 130497480 <u>GEO DataSets Gene UniGene Profile neighbors Chromosome neighbors</u> Homologene neighbors Find items	
Customize Clear all Show additional filters	 IL12B - PTPN1 depletion effect on Hodgkin lymphoma derived cell line Annotation: IL12B, interleukin 12B Organism: Homo sapiens Reporter: GPL570, 207901_at (ID_REF), GDS5288, 3593 (Gene ID), NM_002187 DataSet type: Expression profiling by array, transformed count, 4 samples ID: 120821040 GEO DataSets Gene UniGene Profile neighbors Chromosome neighbors Homologene neighbors 	5]
	 IL12B - Hypoxia effect on monocyte-derived, mature dendritic cells Annotation: IL12B, interleukin 12B Organism: Homo sapiens Reporter: GPL570, 207901_at (ID_REF), GDS3858, 3593 (Gene ID), NM_002187 DataSet type: Expression profiling by array, count, 6 samples ID: 70396740 Recent activity 	.: See more
	Ilit2b - Type II activated macrophage Annotation: Ilit2b, interleukin 12b Organism: Mus musculus Promie reignoors Chromosome neignoors Interleukin 12b Organism: Mus musculus Expression of specific coll 261 Interleukin 12b Organism: Mus musculus	Turn Off Clear GEO Profiles ecific inflammasome gene s older individuals in., PubMed

Single gene follow-up: GEO profiles tool

https://www.ncbi.nlm.nih.gov/geoprofiles/

①		120% Cexisti	ing Liquid Phases Underlie Nucleolar Subcompartments 🔶 😭	ê 🛡
S NCBI Resources	How To 🖸		<u>martyomov</u> <u>My NCBI</u> <u>S</u>	ign Out
GEO Profiles	GEO Profiles II12b Create alert Advanced		Search	Help
Gene symbol Customize	Summary + 20 per page + Sort by Subgroup effect +	Send to: +	Filters: Manage Filters	_
Gene keyword Customize Organism	Search results Items: 1 to 20 of 4285	<< First < Prev Page 1 of 215 Next > Last >>		
Customize	Selitize Sacron hag er stræde hterlerki 10 re resident macrophages Annotation: II12b, interleukin 12b Organism: Mus musculus		Find nathways	۲
Data Set keyword Customize	Organism: Mus musculus Reporter: GPLS345, 1032, 833, (ID, REE), 5055668, 48 E 0.609 (CO30), 0, 61 (034, 035, 10), 01111, 640 Forget type: uppression, Utility, by arrsy, ansformer ID, 130497480 GEO DataSets Gene UniCene Profile neighbors	Chromosome neighbors Homologene neighbors	Database: Select	
GEO accession Customize	Annotation: ILT28, Interleum 128 Organism: Homo sapiens	might be	Find items	_
Clear all Show additional filters	Reporter: GPL570, 207901_at (ID_REF), GDS5288, 358 DataSet-type: Expression profiling by array, transformed ECUal SEC Gene Locate Dot register	Count 4 samples	Search details	
	 IL12B - Hypoxia effect on monocyte-derived, r Annotation: IL12B, interleukin 12B Organism: Homo sapiens Reporter: GPL570, 207901_at (ID_REF), GDS3858, 359 DataSet type: Expression profiling by array, count, 6 san ID: 70396740 GEO DataSets Gene UniGene Profile neighbors 	33 (Gene ID), NM_002187	Search See	e more
	III2b - Type II activated macrophage Annotation: III2b, interleukin 12b Organism: Mus musculus Reporter: GPL1261, 1449497_at (ID_REF), GDS2041, 1		Q II12b (4285)	

This is not good enough

- Single genes can have weird behavior with outliers
- Single genes do not necessarily define the phenotype

Working with gene sets is much more reliable!!

LETTER

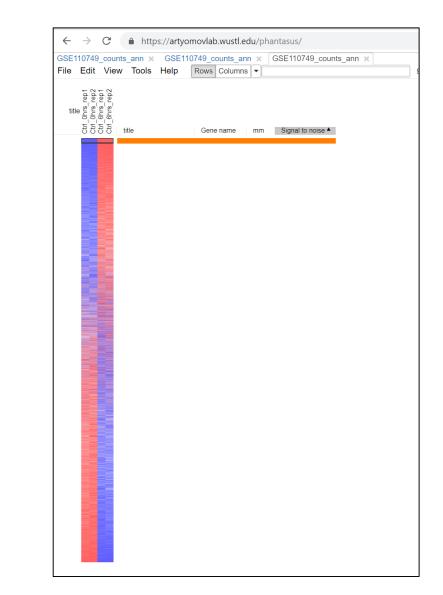
https://doi.org/10.1038/s41586-018-0052-z

Electrophilic properties of itaconate and derivatives regulate the $I\kappa B\zeta-ATF3$ inflammatory axis

Monika Bambouskova¹, Laurent Gorvel¹, Vicky Lampropoulou¹, Alexey Sergushichev², Ekaterina Loginicheva¹, Kendall Johnson³, Daniel Korenfeld¹, Mary Elizabeth Mathyer⁴, Hyeryun Kim³, Li–Hao Huang¹, Dustin Duncan⁵, Howard Bregman³, Abdurrahman Keskin⁶, Andrea Santeford⁷, Rajendra S. Apte⁷, Raghav Sehgal⁸, Britney Johnson¹, Gaya K. Amarasinghe¹, Miguel P. Soares⁹, Takashi Satoh¹⁰, Shizuo Akira¹⁰, Tsonwin Hai¹¹, Cristina de Guzman Strong⁴, Karine Auclair⁵, Thomas P. Roddy³, Scott A. Biller³, Marko Jovanovic⁶, Eynav Klechevsky¹, Kelly M. Stewart³, Gwendalyn J. Randolph¹ & Maxim N. Artyomov¹*

Reporting summary. Further information on experimental design is available in the Nature Research Reporting Summary linked to this paper.
Data availability. The raw and processed RNA-seq data have been deposited in the Gene Expression Omnibus with accession numbers GSE102190 and GSE110749. The original mass spectra may be downloaded from MassIVE (http://massive.ucsd.edu) using the identifier MSV000082101. Source data for the graphical representations found in all figures and Extended Data figures are provided. Source data for western blots (uncropped and unprocessed scans with size marker indications) are presented in Supplementary Fig. 1. All other data that support the findings of this study are available from the corresponding author upon reasonable request.

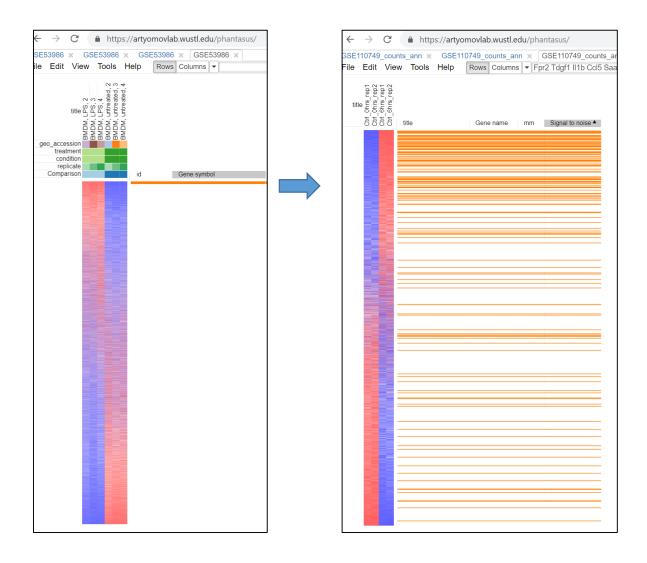
Electroj regulate

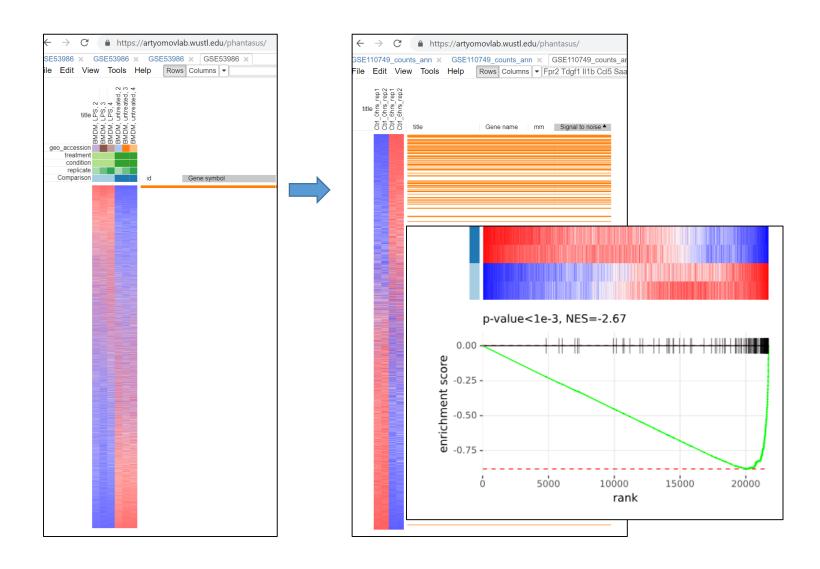

LEJ

acc.cgi

Monika Bambousk Kendall Johnson³, Howard Bregman³ Gaya K. Amarasin Karine Auclair⁵, Ti Gwendalyn J. Rand

i?acc=GSE110749		
Supmission date	Fed 10, 2018	
Last update date	Feb 01, 2019	
Contact name	Maxim N. Artyomov	
E-mail	martyomov@pathology.wustl.edu	
Department	e Washington University in St.Louis Immunology&Pathology	
Street address	660 S. Euclid Avenue, Campus Box 8118	
City	St.Louis	
State/province	MO	
ZIP/Postal code	63110	
Country	USA	
Platforms (1)	GPL17021 Illumina HiSeq 2500 (Mus musculus)	1586-018-0052-z
Samples (20)	GSM3015930 Ctrl_0hrs_rep1	
∃ Less	GSM3015931 Ctrl_0hrs_rep2	•
	GSM3015932 Ctrl_1hrs_rep1	atives
	GSM3015933 Ctrl_1hrs_rep2	
	GSM3015934 Ctrl_2hrs_rep1	
	GSM3015935 Ctrl_2hrs_rep2	
	GSM3015936 Ctrl_4hrs_rep1	n ¹ ,
	GSM3015937 Ctrl_4hrs_rep2	ng^4 ,
	GSM3015938 Ctrl_6hrs_rep1	
	GSM3015939 Ctrl_6hrs_rep2	
	GSM3015940 DI_0hrs_rep1	
	GSM3015941 DI_0hrs_rep2	
	GSM3015942 DI_1hrs_rep1	
	GSM3015943 DI_1hrs_rep2	
	GSM3015944 DI_2hrs_rep1	
	GSM3015945 DI_2hrs_rep2	
	GSM3015946 DI_4hrs_rep1	
	GSM3015947 DI_4hrs_rep2	
	GSM3015948 DI_6hrs_rep1	
	GSM3015949 DI_6hrs_rep2	


You know what to do!

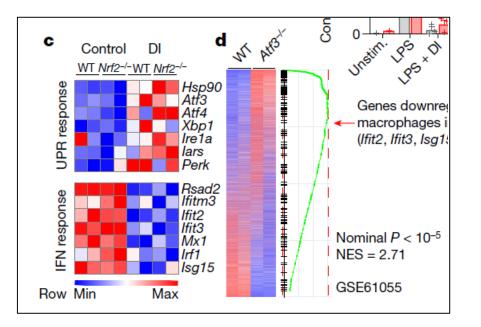

Counts are available in folder

Log2-> qnorm-> Filter top 10k-> DE of 0h vs 6h LPS

The two datasets are connected!

The two datasets are connected!

But you kind of knew the answer!!!


Do people do it in real science? – YES!!

LETTER

https://doi.org/10.1038/s41586-018-0052-z

Electrophilic properties of itaconate and derivatives regulate the $I\kappa B\zeta-ATF3$ inflammatory axis

Monika Bambouskova¹, Laurent Gorvel¹, Vicky Lampropoulou¹, Alexey Sergushichev², Ekaterina Loginicheva¹, Kendall Johnson³, Daniel Korenfeld¹, Mary Elizabeth Mathyer⁴, Hyeryun Kim³, Li-Hao Huang¹, Dustin Duncan⁵, Howard Bregman³, Abdurrahman Keskin⁶, Andrea Santeford⁷, Rajendra S. Apte⁷, Raghav Sehgal⁸, Britney Johnson¹, Gaya K. Amarasinghe¹, Miguel P. Soares⁹, Takashi Satoh¹⁰, Shizuo Akira¹⁰, Tsonwin Hai¹¹, Cristina de Guzman Strong⁴, Karine Auclair⁵, Thomas P. Roddy³, Scott A. Biller³, Marko Jovanovic⁶, Eynav Klechevsky¹, Kelly M. Stewart³, Gwendalyn J. Randolph¹ & Maxim N. Artyomov¹*

What if we make database?

Try to do diff expression between all conditions in all published datasets...

MsigDB c7

CSEA ne Set Enrichment Analysis	GSEA Home	Downloads Molecular Signatures Database	Documentation Contact
MSigDB Home About Collections Browse Gene Sets Search Gene Sets Investigate Gene Sets View Gene Families Help	 compute overlaps with display the gene set experimental experimentat experimental experimental e	ne biology behind a gene set by using the following to other gene sets in MSigDB (more) xpression profile based on a selected compendium o of the gene set by gene families (more)	f expression data (more)
	Gene Identifiers	Compute Overlaps H: hallmark gene sets C1: positional gene sets C2: curated gene sets C2: curated gene sets C2: curated gene sets C2: curated gene sets C2: computational gene sets C3: motif gene sets C3: motif gene sets C3: motif gene sets C3: motif gene sets C3: computational gene sets C4: c	Compendia expression profiles (Neuratis) (NCI-60 cell lines (National Cancer Institute) daplay expression profile Gene families stow gene families

MSigDB.C7 – attempt to make such database

e software.broadinstitute.org/gsea/m								
	C6 (oncogenic signatures, 189 gene sets)							
C7 (immunologic signatures, 4872 gene sets)								
							GOLDRATH_EFF_VS_MEMORY_CD8_TCELL_DN	GSE21546_SAP1A_KO_VS_SAP1A_KO_AND_E
GOLDRATH_EFF_VS_MEMORY_CD8_TCELL_UP	LK1_KO_DP_THYMOCYTES_UP	CD4_TCELL_72H_TSST_ACT_UP						
GOLDRATH_NAIVE_VS_EFF_CD8_TCELL_DN	GSE21546_UNSTIM_VS_ANTI_CD3_STIM_DP	GSE36476_YOUNG_VS_OLD_DONOR_MEMORY						
GOLDRATH_NAIVE_VS_EFF_CD8_TCELL_UP	_THYMOCYTES_DN	CD4_TCELL_DN						
GOLDRATH_NAIVE_VS_MEMORY_CD8_TCELL_		GSE36476_YOUNG_VS_OLD_DONOR_MEMORY						
DN	_THYMOCYTES_UP	CD4_TCELL_UP						
GOLDRATH_NAIVE_VS_MEMORY_CD8_TCELL_		GSE36527_CD62L_HIGH_CD69_NEG_VS_CD6						
UP	K1_KO_DP_THYMOCYTES_DN	2L_LOW_CD69_POS_TREG_KLRG1_NEG_DN						
GSE10094_LCMV_VS_LISTERIA_IND_EFF_C	GSE21546_UNSTIM_VS_ANTI_CD3_STIM_EL	GSE36527_CD62L_HIGH_CD69_NEG_VS_CD6						
D4_TCELL_DN	K1_KO_DP_THYMOCYTES_UP	2L_LOW_CD69_POS_TREG_KLRG1_NEG_UP						
GSE10094_LCMV_VS_LISTERIA_IND_EFF_C	GSE21546_UNSTIM_VS_ANTI_CD3_STIM_SA	GSE36527_CD62L_HIGH_VS_CD62L_LOW_TR						
D4_TCELL_UP	P1A_KO_AND_ELK1_KO_DP_THYMOCYTES_DN							
GSE10147_IL3_AND_HIVP17_VS_IL3_AND_	OCENERAL UNICEDA VIC ANEL ODD CTV C	GSE36527_CD62L_HIGH_VS_CD62L_LOW_TR						
CPG_STIM_PDC_DN	GSE21546_UNSTIM_VS_ANTI_CD3_STIM_SA	EG_CD69_NEG_KLRG1_NEG_UP						
GSE10147_IL3_AND_HIVP17_VS_IL3_AND_	P1A_KO_AND_ELK1_KO_DP_THYMOCYTES_UP							
CPG_STIM_PDC_UP GSE10147_IL3_VS_IL3_AND_CPG_STIM_PD	GSE21546_UNSTIM_VS_ANTI_CD3_STIM_SA	_LOS_KLRG1_NEG_DN GSE36527_CD69_NEG_VS_POS_TREG_CD62L						
C_DN	P1A_KO_DP_THYMOCYTES_DN	_LOS_KLRG1_NEG_UP						
GSE10147_IL3_VS_IL3_AND_CPG_STIM_PD	GSE21546_UNSTIM_VS_ANTI_CD3_STIM_SA	GSE36826_NORMAL_VS_STAPH_AUREUS_INF						
C_UP	P1A_KO_DP_THYMOCYTES_UP	_IL1R_KO_SKIN_DN						
GSE10147_IL3_VS_IL3_AND_HIVP17_STIM	GSE21546_WT_VS_ELK1_KO_ANTI_CD3_STI	GSE36826_NORMAL_VS_STAPH_AUREUS_INF						
_PDC_DN	M_DP_THYMOCYTES_DN	_IL1R_KO_SKIN_UP						
GSE10147_IL3_VS_IL3_AND_HIVP17_STIM	GSE21546_WT_VS_ELK1_KO_ANTI_CD3_STI	GSE36826_NORMAL_VS_STAPH_AUREUS_INF						
_PDC_UP	M DP THYMOCYTES UP	_SKIN_DN						
GSE10211_UV_INACT_SENDAI_VS_LIVE_SE	GSE21546_WT_VS_ELK1_KO_DP_THYMOCYTE							
NDAI_VIRUS_TRACHEAL_EPITHELIAL_CELL	S_DN	_SKIN_UP						
S_DN	GSE21546_WT_VS_ELK1_KO_DP_THYMOCYTE							
GSE10211_UV_INACT_SENDAI_VS_LIVE_SE	S_UP	GSE36826_WT_VS_IL1R_KO_SKIN_STAPH_A						
NDAI_VIRUS_TRACHEAL_EPITHELIAL_CELL	GSE21546_WT_VS_SAP1A_KO_AND_ELK1_KO							
S_UP	ANTI_CD3_STIM_DP_THYMOCYTES_DN	GSE36826_WT_VS_IL1R_KO_SKIN_STAPH_A						
GSE10239_KLRG1INT_VS_KLRG1HIGH_EFF_	GSE21546_WT_VS_SAP1A_KO_AND_ELK1_KO							
CD8_TCELL_DN	_ANTI_CD3_STIM_DP_THYMOCYTES_UP	GSE36826_WT_VS_IL1R_KO_SKIN_UP						
GSE10239_KLRG1INT_VS_KLRG1HIGH_EFF_	GSE21546_WT_VS_SAP1A_KO_AND_ELK1_KO							
CD8_TCELL_UP	_DP_THYMOCYTES_DN	LL_IL2_TREATED_17H_DN						
GSE10239_MEMORY_VS_DAY4.5_EFF_CD8_T	GSE21546_WT_VS_SAP1A_KO_AND_ELK1_KO							
CELL_DN	DP_THYMOCYTES_UP	 LL_IL2_TREATED_17H_UP						
GSE10239_MEMORY_VS_DAY4.5_EFF_CD8_T	GSE21546_WT_VS_SAP1A_KO_ANTI_CD3_ST							
CELL_UP	IM_DP_THYMOCYTES_DN	LL_IL2_TREATED_2H_DN						
	GSE21546 WT VS SAP1A KO ANTI CD3 ST							

Macrophage activation is found!

$\overline{\sim}$.org/gaca/maig	jdb/compute_overlap:							
Analysis	GSEA H	Home Down	loads Molecu	lar Signatures	Database	Docume	ntation	Contact	
	Compu	ite Overlaj	os for Seleo	cted Ger	nes				
ets	Converted 1	54 submitted iden	ifiers into 127 entre	z genes, click	here for details				
	Collections	# Overlaps Show	n # Gene Sets in	Collections	# Genes in Co	mparison	(n) #	Genes in Univ	verse (N)
	C7	50	4872		127		45	5956	
	Color bar sha indicates less	ading from light gr	e the gene set page een to black, where -values (>= 0.05). 						
	Gene Set Name [# Genes (K)] GSE18281_SUBCAPSULAR_VS_CENTRAL_CORTIC TICAL_REGION_OF_THYMUS_DN [200]		Descripti	on	# Genes in Overlap (k)	k/K	p-value 👔	FDR q-value	
				in thymus regions:	wn-regulated s cortical subcapsular ntral cortical.	33		1.69 e ⁻⁴⁹	8.21 e ⁻¹
		.6_KO_VS_IFNG_KC 14_TCELL_DN [200]		in CD4 [0 cells with expansio [GeneID=		32		1.59 e ⁻⁴⁷	3.88 e ⁻
	GSE7348_U GE_DN [167	NSTIM_VS_LPS_ST)]	M_MACROPHAGE_	in macrop	wn-regulated bhages: I versus LPS.	29		3.69 e ⁻⁴⁴	6 e*
		CURDLAN_HIGHDO	SE_VS_GMCSF_AND IM_DC_DN [200]	in bone r dendritic dose of 1 D-oligogl [PubCher versus CS	ucan n=11375554]	30		1.23 e ⁻⁴³	1.5 e ⁻⁴
				high dose D-oligogi	e of 1,3-beta- ucan m=11375554].				
		SECONDARY_VS_QI _TCELL_UP [177]	JATERNARY_MEMOR	high dose D-oligogl (PubCher Genes up	ucan n=11375554]. -regulated in CD8 T cells: 2'	29		2.28 e ⁻⁴³	2.22 e ⁻⁴
	MORY_CD8_	_TCELL_UP [177]		high dose D-oligogi [PubCher Genes up memory versus 4' Genes do in compa polysome (translate before an	ucan m=11375554]. regulated in CD8 T cells: 2' wwn-regulated rison of bound ed) mRNA dd 4 h after 4 agonist)	29 28		2.28 e ⁻⁴³ 7.84 e ⁻⁴⁰	2.22 e 4.78 e

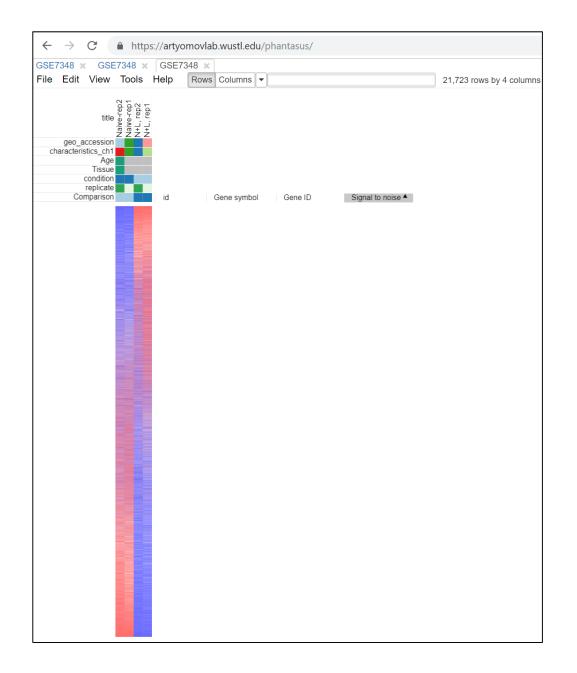
You know what to do!

Œ

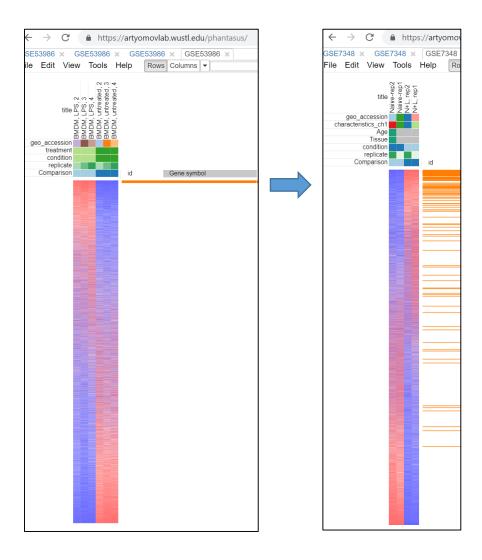
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7348

91.		
	Status	Public on Apr 22, 2007
	Title	Gene Expression in Naive and Tolerant Macrophages stimulated with LPS
	Organism	Mus musculus
	Experiment type	Expression profiling by array
	Summary	The inflammatory response initiated by microbial products signaling through Toll-like receptors (TLRs) of the innate immune system is essential for host defense against infection. Because inflammation can be harmful to host tissues, the innate response is highly regulated. Negative regulation of TLR4, the receptor for bacterial lipopolysaccharide (LPS), results in LPS tolerance, defined as hyporesponsiveness to repeated stimulation with LPS. LPS tolerance is thought to protect the host from excessive inflammation by turning off TLR4 signal, which then shuts down TLR-induced genes. However, TLR signaling induces hundreds of genes with very different functions. We reasoned that genes with different functions should have different requirements for regulation. Specifically, genes encoding proinflammatory mediators should be transiently inactivated to limit tissue damage, while genes encoding antimicrobial effectors, which directly target pathogens, should remain inducible in tolerance line macrophages, here we show that TLR-induced genes may indeed be divided into two distinct categories based on their functions and regulatory requirements. Further, we show these distinct groups are regulated by gene-specific, and not signal-specific mechanisms. Keywords: Treatment Comparison
	Overall design	We examined gene expression using affymetrix genechips in 3 groups of murine bone-marrow derived macrophages: Naive (untreated), Naive stimulated with LPS, and Tolerant stimulated with LPS. Two biological replicates were performed for each group.
	Contributor(s)	Foster SL, Hargreaves DC, Medzhitov R
	Citation(s)	Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. <i>Nature</i> 2007 Jun 21;447(7147):972- 8. PMID: 17538624
	Submission date	Mar 22, 2007
	Last update date	Jan 08, 2019
	Contact name	Simmie L Foster
	E-mail	simmie.foster@yale.edu
	Phone	(203)785-6090
	Fax	(203)785-4461
	Organization name	e Yale University School of Medicine
	Department	Immunobiology
	Lab	Medzhitov
	Street address	300 Cedar St
	City	New Haven
	State/province	ст

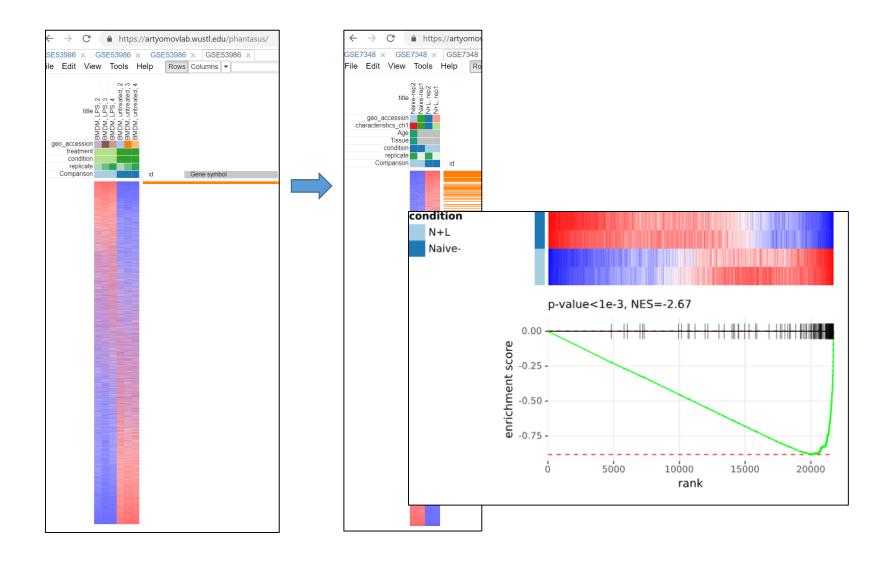
Vol 447|21 June 2007|doi:10.1038/nature05836


nature

ARTICLES


Gene-specific control of inflammation by TLR-induced chromatin modifications

Simmie L. Foster^{1*}, Diana C. Hargreaves^{1*} & Ruslan Medzhitov¹


Toll-like receptors (TLRs) induce a multi-component inflammatory response that must be tightly regulated to avoid tissue damage. Most known regulatory mechanisms target TLR signalling pathways and thus broadly inhibit multiple aspects of the inflammatory response. Given the functional diversity of TLR-induced genes, we proposed that additional, gene-specific regulatory mechanisms exist to allow individual aspects of the TLR-induced response to be differentially regulated. Using an *in vitro* system of lipopolysaccharide tolerance in murine macrophages, we show that TLR-induced genes fall into two categories on the basis of their functions and regulatory requirements. We demonstrate that representatives from the two classes acquire distinct patterns of TLR-induced chromatin modifications. These gene-specific chromatin modifications are associated with transient silencing of one class of genes, which includes pro-inflammatory mediators, and priming of the second class, which includes antimicrobial effectors. These findings illustrate an adaptive response in macrophages and reveal component-specific regulation of inflammation.

Differentially expressed genes behave very similar between two datasets!

Differentially expressed genes behave very similar between two datasets!

MSigDB.C7 – attempt to make such database

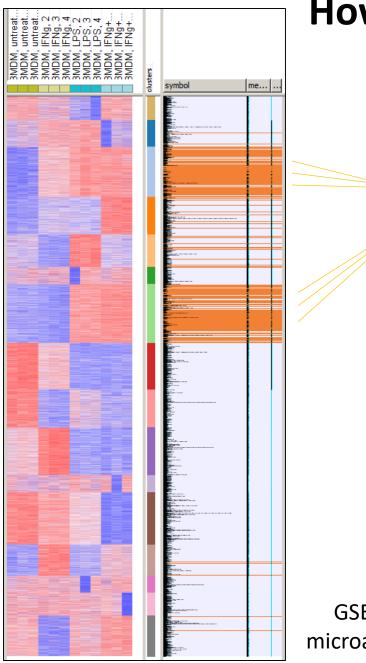
GEO contains A LOT of datasets

S NCBI Resources 🛛 How To 🖸	
GEO DataSets adipocytes Advanced Bubble Bub	
How To 🖂	Sign in to NCB

GEO DataSets	GEO DataSets Advanced GEO DataSets GEO Data	E Search	Help
Show additional filters	Display Settings: ♥ Summary, 20 per page, Sorted by Default order Send to: ♥	Filters: Manage Filters	
Entry type DataSets (39) Series (282) Samples (2764) Platforms (10) Organism Select	Results: 1 to 20 of 3095 <	▼ Top Organisms [<u>Tree</u>] Mus musculus (1546) Homo sapiens (1471) Sus scrofa (51) Rattus norvegicus (26) Bos taurus (7) More	
Study type Expression profiling by arra Methylation profiling by arra More	Type: Expression profiling by array, transformed count, 2 disease state, 2 gender, 2 tissue sets Platform: GPL6244 Series: GSE29718 20 Samples AV Download data: GEO (CEL)	Find related data Database: Select ▼ Find items	

S NCBI Resources

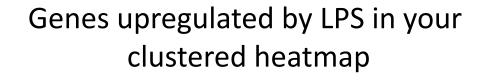
However, they are poorly annotated


	GSM795602	Epididymal adipose GPR120KO HFD #427
∃ Less	GSM795603	Liver GPR120KO HFD #427
	GSM795604	Epididymal adipose GPR120KO HFD #428
	GSM795605	Liver GPR120KO HFD #428
	GSM795606	Epididymal adipose GPR120KO HFD #429
	GSM795607	Liver GPR120KO HFD #429
	GSM795608	Epididymal adipose WT HFD #546
	GSM795609	Liver WT HFD #546
	GSM795610	Epididymal adipose WT HFD #547
	GSM795611	Liver WT HFD #547
	GSM795612	Epididymal adipose WT HFD #560
	GSM795613	Liver WT HFD #560
	GSM795614	Liver WT ND #686
	GSM795615	Epididymal adipose WT ND #687
	GSM795616	Liver WT ND #687
	GSM795617	Epididymal adipose WT ND #690
	GSM795618	Liver WT ND #690
	GSM795619	Epididymal adipose GPR120KO ND #718
	GSM795620	Liver GPR120KO ND #718
	GSM795621	Epididymal adipose GPR120KO ND #719
	GSM795622	Liver GPR120KO ND #719
	GSM795623	Epididymal adipose GPR120KO ND #720
	GSM795624	Liver GPR120KO ND #720
	GSM795625	Epididymal adipose WT ND #686

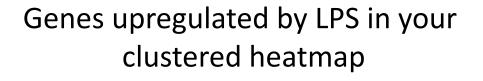
However, they are poorly annotated

Samples (24)	GSM795602	Epididymal adipose GPR120KO HFD #427
∃ Less	GSM795603	Liver GPR120KO HFD #427
	GSM795604	Epididymal adipose GPR120KO HFD #428
	GSM795605	Liver GPR120KO HFD #428
	GSM795606	Epididymal adipose GPR120KO HFD #429
	GSM795607	Liver GPR120KO HFD #429
	GSM795608	Epididymal adipose WT HFD #546
	GSM795609	Liver WT HFD #546
	GSM795610	Epididymal adipose WT HFD #547
	GSM795611	Liver WT HFD #547
	GSM795612	Epididymal adipose WT HFD #560
	GSM795613	Liver WT HFD #560
	GSM795614	Liver WT ND #686
	GSM795615	Epididymal adipose WT ND #687
	GSM795616	Liver WT ND #687
	GSM795617	Epididymal adipose WT ND #690
	GSM795618	Liver WT ND #690
	GSM795619	Epididymal adipose GPR120KO ND #718
	GSM795620	Liver GPR120KO ND #718
	GSM795621	Epididymal adipose GPR120KO ND #719
	GSM795622	Liver GPR120KO ND #719
	GSM795623	Epididymal adipose GPR120KO ND #720
	GSM795624	Liver GPR120KO ND #720
	GSM795625	Epididymal adipose WT ND #686

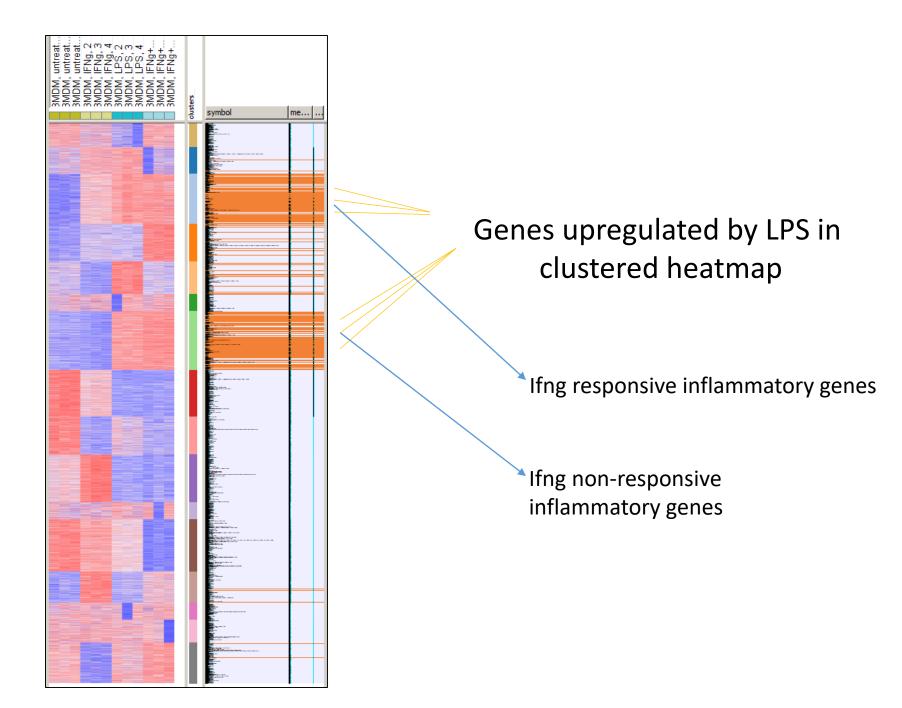
It is virtually impossible to parse such entry without manual curation

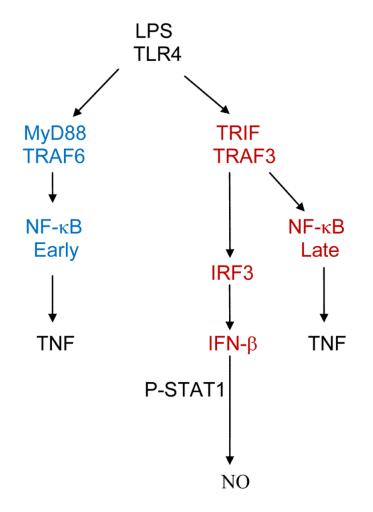

Part II: how to get somewhere you haven't been before

How it looks like in full dataset...

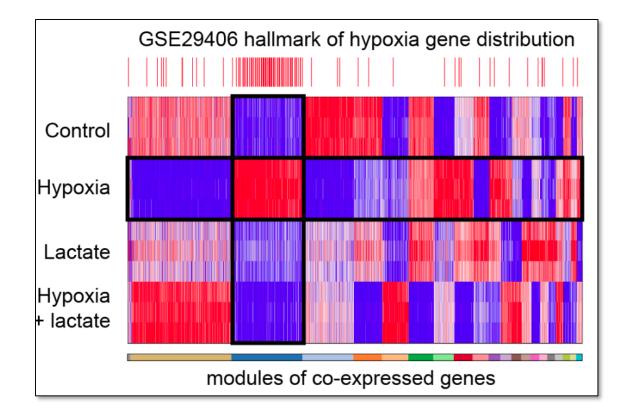

Genes upregulated by LPS in clustered heatmap

GSE53986 microarray data

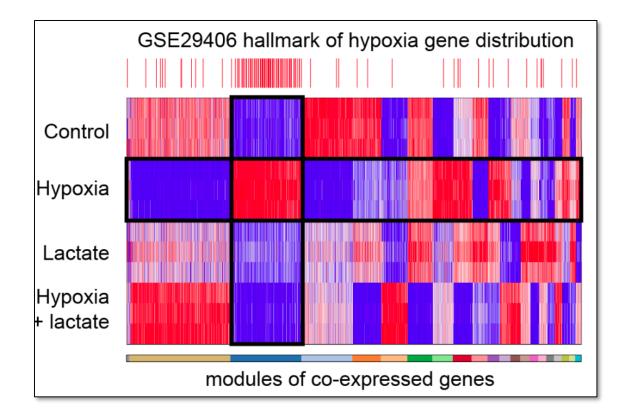

Gene Set Name [# Genes (K)]	Description	# Genes in Overlap (k)	k/K	p-value 🛛	FDR q-value
HALLMARK_INTERFERON_GAMMA_RESPONSE [200]	Genes up-regulated in response to IFNG [GeneID=3458].	100		1.02 e ⁻¹²⁰	1.4 e ⁻¹¹
HALLMARK_INTERFERON_ALPHA_RESPONSE [97]	Genes up-regulated in response to alpha interferon proteins.	51		3.23 e ⁻⁶³	2.22 e ⁻⁶
REACTOME_IMMUNE_SYSTEM [933]	Genes involved in Immune System	102		9.25 e ⁻⁵⁰	4.25 e ⁻⁴
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_ NE_SYSTEM [270]	Genes involved in Cytokine Signaling in Immune system	41		5.26 e ⁻²⁶	1.81 e ⁻⁷
REACTOME_INTERFERON_SIGNALING [159]	Genes involved in Interferon Signaling	33		1.09 e ⁻²⁵	3.02 e ⁻³
REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_ EN_PROCESSING_PRESENTATION [251]	Genes involved in Class I MHC mediated antigen processing & presentation	39		3.53 e ⁻²⁵	8.11 e ⁻²
REACTOME_INTERFERON_ALPHA_BETA_SIGNALI ALING [64]	Genes involved in Interferon alpha/beta signaling	23		2.3 e ⁻²⁴	4.53 e ⁻⁷
REACTOME_ADAPTIVE_IMMUNE_SYSTEM [539]	Genes involved in Adaptive Immune System	53		5.85 e ⁻²⁴	1.01 e ⁻³
REACTOME_ANTIGEN_PROCESSING_UBIQUITINA INATION_PROTEASOME_DEGRADATION [212]	Genes involved in Antigen processing: Ubiquitination & Proteasome degradation	32		1.66 e ⁻²⁰	2.55 e ⁻¹
REACTOME_ER_PHAGOSOME_PATHWAY [61]	Genes involved	20		1.96 e ⁻²⁰	2.7 e ⁻²



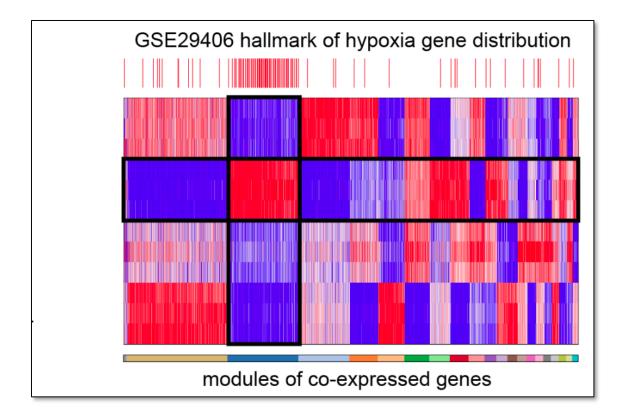
Gene Set Name [# Genes (K)]	Description	# Genes in Overlap (k)	k/K	p-value 👔	FDR q-value
HALLMARK_TNFA_SIGNALING_VIA_NFKB [200]	Genes regulated by NF-kB in response to TNF [GeneID=7124].	45		8.11 e ⁻³⁴	1.12 e ⁻
HALLMARK_INFLAMMATORY_RESPONSE [200]	Genes defining inflammatory response.	44		1.21 e ⁻³²	8.31 e ⁻
REACTOME_IMMUNE_SYSTEM [933]	Genes involved in Immune System	86		4.15 e ⁻³²	1.91 e ⁻
HALLMARK_MTORC1_SIGNALING [200]	Genes up-regulated through activation of mTORC1 complex.	36		9.36 e ⁻²⁴	3.23 e ⁻
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_ NE_SYSTEM [270]	Genes involved in Cytokine Signaling in Immune system	37		3.79 e ⁻²⁰	1.05 e
HALLMARK_HYPOXIA [200]	Genes up-regulated in response to low oxygen levels (hypoxia).	32		1.16 e ⁻¹⁹	2.67 e
REACTOME_SIGNALING_BY_ILS [107]	Genes involved in Signaling by Interleukins	24		1.24 e ⁻¹⁸	2.44 e
REACTOME_ADAPTIVE_IMMUNE_SYSTEM [539]	Genes involved in Adaptive Immune System	49		1.73 e ⁻¹⁸	2.99 e
HALLMARK_GLYCOLYSIS [200]	Genes encoding proteins involved in glycolysis and gluconeogenesis.	27		6.49 e ⁻¹⁵	9.94 e
HALLMARK_UV_RESPONSE_UP [158]	Genes up-regulated in response to ultraviolet (UV) radiation.	23		1.27 e ⁻¹³	1.76 e
HALLMARK_HEME_METABOLISM [200]	Genes involved in metabolism of heme (a cofactor consisting of iron and porphyrin) and erythroblast differentiation.	25		3.84 e ⁻¹³	4.81 e



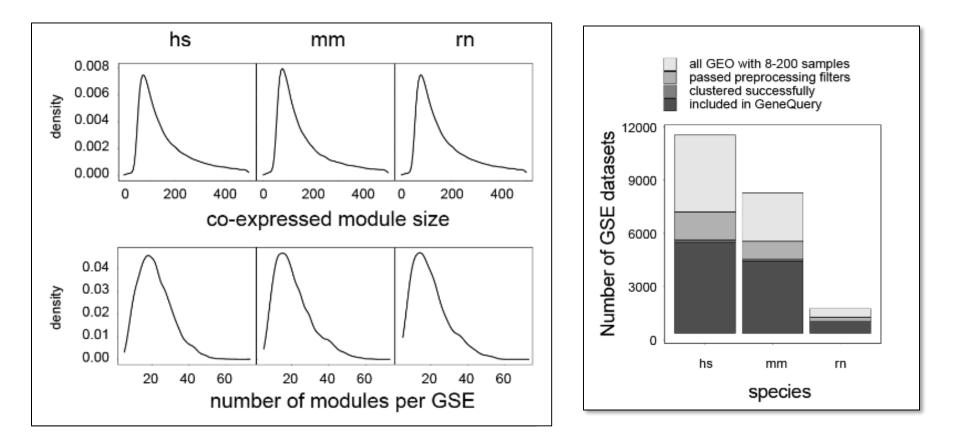
These two transcriptional modules are due to two regulatory modes downstream TLR4

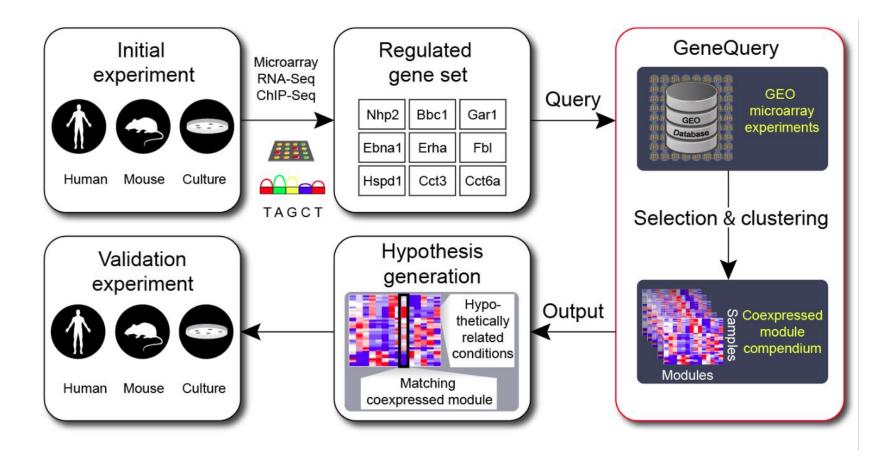


Observation: biologically meaningful gene sets are typically co-expressed in relevant datasets!!


Observation: biologically meaningful gene sets are typically co-expressed in relevant datasets!!

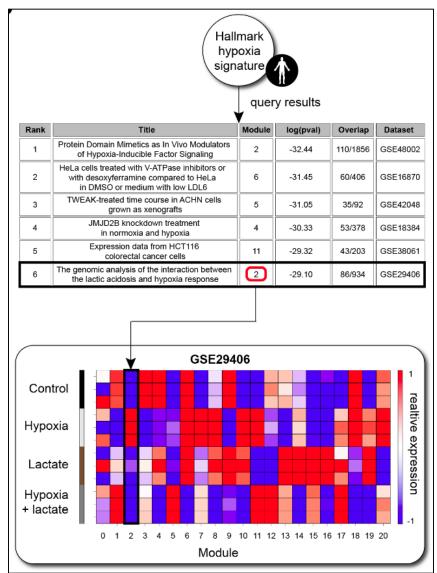
Why is it important: Co-expression clustering does NOT require knowledge of conditions


Why is it important: Co-expression clustering does NOT require knowledge of conditions

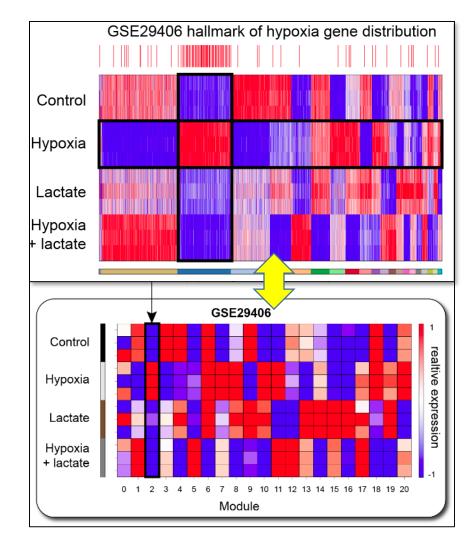

You can cluster whole GEO!!

GEO DataSets G	EO DataSets macrophage Create alert Advanced				with 8-200 s preprocessir	
Entry type clear DataSets (0) Series (2,502)	Summary			clustered	l successful in GeneQue	ly
Samples (0)	Search results		12000			
Platforms (0)	Items: 1 to 20 of 2502 << First < Prev Page 1 of 126 Next > Last >>	S	12000			
Organism		et e				
Customize	Filters activated: Series. <u>Clear all</u> to show 30070 items.	asi				
Study type Expression profiling by array	SEQC Project (Submitter supplied) This SuperSeries is composed of the SubSeries listed below.	datasets	9000			
Methylation profiling by array Customize	Organism: Rattus norvegicus; synthetic construct; Homo sapiens					
Customize	Type: Expression profiling by array; Expression profiling by high throughput sequencing	GSE	11			
Author	15 related Platforms 4521 Samples Download data: CEL, TXT	S	6000			
Customize	Series Accession: GSE47792 ID: 200047792	G	6000			
Attribute name	PubMed Full text in PMC Similar studies Analyze with GEO2R	of				
tissue (688)		0				
strain (835)	Expression Project for Oncology (expO)	5				
Customize	2. (Submitter supplied) The mission of expO is to build on the technologies and outcomes of the Human Genome	×	3000			
Publication dates	Project to accelerate improved clinical management of cancer patients. IGC's Expression Project for Oncology	1				
30 days	(expO) seeks to integrate longitudinal clinical annotation with gene expression data for a unique and powerful portrait of human malignancies, providing critical perspective on diagnostic markers, prognostic indicators, and	Number				
1 year	therapeutic targets, more	۲ ۲				
Custom range	Organism: Homo sapiens	~	0			
0	Type: Expression profiling by array		0	,		
Clear all	Platform: GPL570 2158 Samples			hs	mm	rn
Show additional filters	Download data: CEL			115	11111	
	Series Accession: GSE2109 ID: 200002109 Analyze with GEO2R					
					species	5
	Utilizing single-cell variations to reveal environment-dependent tuning of network connectivity in				•	
	3. human macrophages					

You can cluster whole GEO!!



Get the idea for your next experiment!


Get the idea for your next experiment!

http://artyomovlab.wustl.edu/genequery/searcher/ http://genome.ifmo.ru/genequery/searcher/

Get the idea for your next experiment!

http://artyomovlab.wustl.edu/genequery/searcher/ http://genome.ifmo.ru/genequery/searcher/

Eigengene is averaged representation of the cluster behavior

Let's practice with our inflammatory macrophage datasets!

Explore gmt

Let's practice with some hallmark signatures!

