

ITMO UNIVERSITY

Introduction into Single-cell RNA-seq

Konstantin "Kostya" Zaitsev, ITMO University Systems biology workshop, Nice, Sep 22th

Cell is the fundamental unit

Microscopy

- FACS (fluorescence activated cell sorting) / CyTOF (Cytometry by Time Of Flight)
- scRNA-seq (single-cell RNA-sequencing)
- Single cell genomics and epigenetics

Single cell RNA-seq

- RNA-seq is a snapshot of what is happening in the sample
- Sample consists of many different cells and cell types
- Single cell RNA-seq thousand of individual snapshots of many cells to capture the whole picture

Nature Reviews | Endocrinolog

Why single-cell RNA-seq

Heterogenous populations:

- New cell subpopulations discovery
- Comparison of similar cell subpopulations
- Marker selection for cell subpopulations

Homogenous populations:

- Understanding heterogeneity
- Cellular states and cellular processes

Tracking of cell differentiation

Full-length RNA-seq from single cells using Smart-seq2

Simone Picelli¹, Omid R Faridani¹, Åsa K Björklund^{1,2}, Gösta Winberg^{1,2}, Sven Sagasser^{1,2} & Rickard Sandberg^{1,2}

¹Ludwig Institute for Cancer Research, Stockholm, Sweden. ²Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden. Correspondence should be addressed to R.S. (rickard.sandberg@ki.se).

Published online 2 January 2014; doi:10.1038/nprot.2014.006 (2014)

Emerging methods for the accurate quantification of gene expression in individual cells hold promise for revealing the extent, function and origins of cell-to-cell variability. Different high-throughput methods for single-cell RNA-seq have been introduced that vary in coverage, sensitivity and multiplexing ability. We recently introduced Smart-seq for transcriptome analysis from single cells, and we subsequently optimized the method for improved sensitivity, accuracy and full-length coverage across transcripts. Here we present a detailed protocol for Smart-seq2 that allows the generation of full-length cDNA and sequencing libraries by using standard reagents. The entire protocol takes ~2 d from cell picking to having a final library ready for sequencing; sequencing will require an additional 1–3 d depending on the strategy and sequencer. The current limitations are the lack of strand specificity and the inability to detect nonpolyadenylated (polyA⁻) RNA.

Cell type reclassification based on Experimental **Original cell** classification scRNA-seg and functional studies strategy CD141+ DC1 (cDC1, CLEC9A+ BDCA-3) cDC progenito CD100+ CD34int DC2 CD1C⁺_A CD1C+ PBMCs (cDC2, BDCA-1) DC3 CD1C⁺_B 24 10000 CD1C-Monol CD14+ CD141-CD11C+ Cellular enrichment DC4 CD1C-CD141-CD11C+ Mono2 pDC (BDCA-2, CD16+ Single cell RNA-seq BDCA-4) 襟 DC5 AXL⁺SIGLEC6⁺ Reverse CD14+ monos Mono3 (AS DCs) mRNA PCR 00000 Single cell cDNA CD16+ DC6 Deep scRNA-seq monos pDC (1-2 M reads/cell; ~5,326 genes/cell) Mono4

Atlas of human blood dendritic cells and monocytes

Villani, Satija et al Science, 2017

ITMO UNIVERSITY

Tirosh, Izar et al, Science 2016

~ 4645 cells

Resource

Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets

Graphical Abstract

Cell

Authors

Evan Z. Macosko, Anindita Basu, ..., Aviv Regev, Steven A. McCarroll

Correspondence

emacosko@genetics.med.harvard.edu (E.Z.M.), mccarroll@genetics.med.harvard.edu (S.A.M.)

In Brief

Capturing single cells along with sets of uniquely barcoded primer beads together in tiny droplets enables large-scale, highly parallel single-cell transcriptomics. Applying this analysis to cells in mouse retinal tissue revealed transcriptionally distinct cell populations along with molecular markers of each type.

Cell, 2015

ARTICLE

Received 20 Sep 2016 | Accepted 23 Nov 2016 | Published 16 Jan 2017

DOI: 10.1038/ncomms14049

OPEN

Massively parallel digital transcriptional profiling of single cells ~ 68 000 cells

Grace X.Y. Zheng¹, Jessica M. Terry¹, Phillip Belgrader¹, Paul Ryvkin¹, Zachary W. Bent¹, Ryan Wilson¹, Solongo B. Ziraldo¹, Tobias D. Wheeler¹, Geoff P. McDermott¹, Junjie Zhu¹, Mark T. Gregory², Joe Shuga¹, Luz Montesclaros¹, Jason G. Underwood^{1,3}, Donald A. Masquelier¹, Stefanie Y. Nishimura¹, Michael Schnall-Levin¹, Paul W. Wyatt¹, Christopher M. Hindson¹, Rajiv Bharadwaj¹, Alexander Wong¹, Kevin D. Ness¹, Lan W. Beppu⁴, H. Joachim Deeg⁴, Christopher McFarland⁵, Keith R. Loeb^{4,6}, William J. Valente^{2,7,8}, Nolan G. Ericson², Emily A. Stevens⁴, Jerald P. Radich⁴, Tarjei S. Mikkelsen¹, Benjamin J. Hindson¹ & Jason H. Bielas^{2,6,8,9}

ITMO UNIVERSITY

Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput

Todd M Gierahn^{1,8}, Marc H Wadsworth II^{2–4,8}, Travis K Hughes^{2–4,8}, Bryan D Bryson^{4,5}, Andrew Butler^{6,7}, Rahul Satija^{6,7}, Sarah Fortune^{4,5}, J Christopher Love^{1,3,4,9} & Alex K Shalek^{2,3,4,9}

Cell

Resource

Mapping the Mouse Cell Atlas by Microwell-Seq

Graphical Abstract

Authors

Xiaoping Han, Renying Wang, Yincong Zhou, ..., Guo-Cheng Yuan, Ming Chen, Guoji Guo

Correspondence

xhan@zju.edu.cn (X.H.), ggj@zju.edu.cn (G.G.)

In Brief

Development of Microwell-seq allows construction of a mouse cell atlas at the single-cell level with a high-throughput and low-cost platform.

February 2018

Growth of single cell technologies

* Taken from Human Cell Atlas white paper

https://www.humancellatlas.org/files/HCA_WhitePaper_18Oct2017-copyright.pdf

Growth of single cell technologies

Number of scRNA-seq papers by year

* Based on number of pubmed results

Main challenges

- Very How to amplify and sequence small number of RNA (typical mammalian cell has only 200 000 mRNA molecules)?
- How to isolate cells?
- We have to work with big number of cells?

Low library complexity

- Small numbers of mRNA molecules yield low complexity cDNA library
- CDNA molecules to be amplified by PCR
- We don't want to sequence tons of PCR duplicates

ITMO UNIVERSITY

Template switching PCR for low input

Switching Mechanism At the 5' end of RNA Template (SMART)

- Very How to amplify and sequence small number of RNA (typical mammalian cell has only 200 000 mRNA molecules)?
- V How to isolate cells?
- We have to work with big number of cells?

Drop-seq schematics

How does it look like?

How does it look like

Drop-seq schematics

26

Drop-seq schematics

Sequencing Cell barcode UMI gene cDNA

Cell barcode	UMI	gene cDNA			Gene	
AATATCGCDCDCAT TGCAATTAACCGCA AATATCGCDCDCAA GGTACTATCCCAGT TACCGTAGCCCGT	AGGCATG	ATGCCGATC	Grouping cell barcodes Grouping UMIs Alignment of cDNA	Grouping cell barcodes Grouping UMIs	AATATCGCDCDCATAGGCATG ATGCCGATC AATATCGCDCDCAACTTGATA ATTTTAGGC	DDX51 CD4
	ACTTGATA	CTTGATATATTTAGGC ITGCACACCGATCATA IGCAGCGCGCGCAGCG			АСТВ	
					GAPDH	
				TACCGTAGCCCGTTTGCAGCGCGCGCAGCG	АСТВ	

Cell barcode	UMI	gene cDNA				Gene
AATATCGCDCDCAT TGCAATTAACCGCA AATATCGCDCDCAA GGTACTATCCCAGT TACCGTAGCCCGTT	TAGGCATG ATAGATAC ACTTGATA TTTGCACA TTGCAGCG ATAGATAC	ATGCCGATC	Grouping cell barcodes Grouping UMIs Alignment of cDNA	Cell 1	AATATCGCDCDCATAGGCATGATGCCGATC AATATCGCDCDCAACTTGATATATTTAGGC	DDX51 CD4
		TTGATA		Cell 2	TGCAATTAACCGCATAGATACTTGCATCCC TGCAATTAACCGCATAGATACCATCCCATG	ACTB ACTB
				Cell 3	GGTACTATCCCAGTTTGCACACCGATCATA	GAPDH
				Cell 4	TACCGTAGCCCGTTTGCAGCGCGCGCAGCG	АСТВ

Gene

ITMO UNIVERSITY

Cell barcode	UMI		ge	ene cDNA
AATATCGCDCDCAT	AGGCATG.			ATGCCGATC
TGCAATTAACCGCA	TAGATAC.			TTGCATCCC
AATATCGCDCDCAA	ACTTGATA.			TATTTAGGC
GGTACTATCCCAGT	TTGCACA.			CCGATCATA
TACCGTAGCCCGTT	TGCAGCG.			CGCGCAGCG
TGCAATTAACCGCA	TAGATAC.			CATCCCATG
AATATCGCDCDCAT	AGTGGAT.			ATGACAGAT
TGCAATTAACCGCC	TAGATAG.			CCTAGAGAT
TACCGTAGCCCGTT	TGACACC.			CCTGGATAC
TACCGTAGCCCGT	GACTAGGG.			CCATGGGCT
GGTACTATCCCAG	TAGCATG.			TAAATCGCC
GGTACTATCCCAGC	CTAGAGA.			CTAGACGGC
•••••	•••••	• • • • • •		• • • • • • • • • • • •

	-	AATATCGCDCDCATAGGCATGATGCCGATC	DDX51
Grouping cell barcodes	le l	AATATCGCDCDCAACTTGATATATTTAGGC	CD4
Grouping UMIs	U	AATATCGCDCDCATAGTGGATATGACAGAT	АСТВ
	2	TGCAATTAACCGC ATAGATACTTGCATCCC [−]	ACTB
	Gell	TGCAATTAACCGCATAGATACCATCCCATG_	ACTB
	0	TGCAATTAACCGCCTAGATAGCCTAGAGAT	RPS15
	ŝ	GGTACTATCCCAGTTTGCACACCGATCATA	GAPDH
	Cell	GGTACTATCCCAGCTAGCATGTAAATCGCC	GTPBP4
	U	GGTACTATCCCAGCCTAGAGACTAGACGGC	ARL1
	4	TACCGTAGCCCGTTTGCAGCGCGCGCAGCG	АСТВ
	Cell	TACCGTAGCCCGTTTGACACCCCTGGATAC	NOP2
	Ŭ		NOTCH2

Cell 1	AATATCGCDCDCATAGGCATGATGCCGATCAATATCGCDCDCAACTTGATATATTTAGGCAATATCGCDCDCATAGTGGATATGACAGAT	DDX51 CD4 ACTB			
Cell 2	TGCAATTAACCGCATAGATAC TTGCATTAACCGCATAGATAC TGCAATTAACCGCATAGATAC CATCCCATG TGCAATTAACCGCCTAGATAG CCTAGAGAT	ACTB ACTB RPS15	Count unique UMIs	Cell: Gene	1
Cell 3	GGTACTATCCCAGTTTGCACACCGATCATAGGTACTATCCCAGCTAGCATGTAAATCGCCGGTACTATCCCAGCCTAGAGACTAGACGGC	gapdh Gtpbp4 Arl1	Create digital expression matrix	Gene Gene Gene	2 3 M
Cell 4	TACCGTAGCCCGTTTGCAGCG .CGCGCAGCG TACCGTAGCCCGTTTGACACC .CCTGGATAC TACCGTAGCCCGTGACTAGGG .CCATGGGCT	ACTB NOP2 NOTCH2			Ma tho tho

Gene

Cell:	AATATCGCDCDCA	TGCAATTAACCGC	GGTACTATCCCAG		TACCGTAGCCCGT
Gene 1	10	03	12	••	14
Gene 2	05	00	00	••	00
Gene 3	12	10	15	••	10
•••	••	••	••	••	••
Gene M	11	01	00	••	00

Matrix describing expression of thousands of genes in thousands of cells

All questions were addressed and answered

- Low input mRNA template switching PCR
- Cell isolation microfluidics
- Read identification Cell barcodes
- Dealing with PCR duplicates Cell/UMI barcodes

All questions were addressed and answered

- Low input mRNA template switching PCR
- Cell isolation microfluidics (might be different)
- Barcoding with beads proved to be very effective

Dataset for today

https://support.10xgenomics.com/single-cell-geneexpression/datasets/3.0.0/pbmc_10k_v3

10k PBMCs from a Healthy Donor (v3 chemistry) Single Cell Gene Expression Dataset by Cell Ranger 3.0.0

Peripheral blood mononuclear cells (PBMCs) from a healthy donor (the same cells were used to generate pbmc_1k_v2, pbmc_10k_v3). PBMCs are primary cells with relatively small amounts of RNA (~1pg RNA/cell).

- 11,769 cells detected
- Sequenced on Illumina NovaSeq with approximately 54,000 reads per cell
- 28bp read1 (16bp Chromium barcode and 12bp UMI), 91bp read2 (transcript), and 8bp I7 sample barcode
- run with --expect-cells=10000

Published on November 19, 2018

This dataset is licensed under the Creative Commons Attribution license.

View Summary

Dataset summary

http://cf.10xgenomics.com/samples/cellexp/3.0.0/pbmc 10k v3/pbmc 10k v3 web summary.html

Basic steps to analysis of scRNA-seq

- Filtering out "bad" barcodes
- Vormalizing expression levels: (scaling and log2 normalizing)
- Visualization (tSNE plots)
- Clustering
- Cellular subset annotation

UMI distribution

Cell:	AATATCGCDCDCA	TGCAATTAACCGC	GGTACTATCCCAG		TACCGTAGCCCGT
Gene 1	10	03	12		14
Gene 2	05	00	00	••	00
Gene 3	12	10	15	••	10
• • •	••	••	••	••	••
Gene M	11	01	00	••	00

43

Sum in every column is 10000

Basic steps to analysis of scRNA-seq

- Filtering out "bad" barcodes
- Vormalizing expression levels
- **Visualization (tSNE plots)**
- Clustering
- Cellular subset annotation

PBMC dataset: visualization by tSNE

tSNE (t-distributed stochastic neighbor embedding): Non-linear dimensionality reduction technique that aims to put data in 2 or 3 dimensional space and save "distance" between each two dots.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

PBMC dataset: clustering and annotation

Clustering:

- Graph-based clustering (preferred);
- K-means.

Annotation:

- For each cluster, perform differential expression: cluster against all others;
- Top DE genes exprected to be highly distinctive marker genes.

Gene expression

Identification of cell types from single-cell transcriptomes using a novel clustering method

Chen Xu and Zhengchang Su*

Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

*To whom correspondence should be addressed. Associate Editor: Ziv Bar-Joseph

Received on October 13, 2014; revised on January 20, 2015; accepted on February 8, 2015

Abstract

Motivation: The recent advance of single-cell technologies has brought new insights into complex biological phenomena. In particular, genome-wide single-cell measurements such as transcriptome sequencing enable the characterization of cellular composition as well as functional variation in homogenic cell populations. An important step in the single-cell transcriptome analysis is to group cells that belong to the same cell types based on gene expression patterns. The corresponding computational problem is to cluster a noisy high dimensional dataset with substantially fewer objects (cells) than the number of variables (genes).

Results: In this article, we describe a novel algorithm named shared nearest neighbor (SNN)-Cliq that clusters single-cell transcriptomes. SNN-Cliq utilizes the concept of shared nearest neighbor that shows advantages in handling high-dimensional data. When evaluated on a variety of synthetic and real experimental datasets, SNN-Cliq outperformed the state-of-the-art methods tested. More importantly, the clustering results of SNN-Cliq reflect the cell types or origins with high accuracy.

Availability and implementation: The algorithm is implemented in MATLAB and Python. The source code can be downloaded at http://bioinfo.uncc.edu/SNNCliq.

Contact: zcsu@uncc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

- Instead of defining clusters based on distance we first find "neighbors" for each of the cells
- Cells that have a lot of neighbors in common, most likely "live in the same neighborhood"
- Algorithm is trying to find such neighborhoods

Basic steps to analysis of scRNA-seq

- Filtering out "bad" barcodes
- Vormalizing expression levels
- Visualization (tSNE plots)
- Clustering
- Cellular subset annotation

PBMC dataset: check for the known marker genes

https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_1k_v3

Communication is important

- When clusters are found we want to identify which cell subsets are presented, to "annotate" them
- If you are a bioinformatician and you are a single-cell RNA-seq dataset that have been designed\done by you, this is a perfect to time to go and talk to a biologist who performed\designed the experiment
- If you are a biologist who designed\performed single-cell RNA-seq experiment, chances are, you know all cellular subsets and markers better than almost anyone else
- This is where you communicate and try to make sense of the data

Latest things

- 5' scRNA-seq is different from 3' scRNA-seq
- 5' scRNA-seq allows us to get TCR and IG repertoires of the cells

3' scRNA-seq

5' scRNA-seq

Pooled cDNA processed in bulk

Simultaneous epitope and transcriptome measurement in single cells

Marlon Stoeckius[™], Christoph Hafemeister, William Stephenson, Brian Houck-Loomis, Pratip K Chattopadhyay, Harold Swerdlow, Rahul Satija & Peter Smibert

> naure biotechnology

rights reserved

Multiplexed quantification of proteins and transcripts in single cells

Vanessa M Peterson^{1,5}, Kelvin Xi Zhang^{2,5}, Namit Kumar¹, Jerelyn Wong³, Lixia Li¹, Douglas C Wilson³, Renee Moore⁴, Terrill K McClanahan³,

Svetlana Sadekova³ & Joel A Klappenbach¹

the standard 10x Genomics single-cell (sc)RNA-seq platform³, which is a droplet-based system designed for 3' digital counting of mRNA in thousands of single cells.

REAP-seq leverages the DNA polymerase activity of the reverse transcriptase to simultaneously extend the primed AbB with the poly(dT) cell barcode and synthesize complementary DNA from mRNA in the same reaction. Exonuclease I is then used to degrade any excess unbound single-stranded oligonucleotides from the protein double-stranded (ds) DNA (~155 bp) products to prevent crosstalk between AbBs and cell barcodes from different cells (Supplementary Fig. 4). Dextran sulfate was added to AbB labeling buffer to reduce non-specific binding of negatively charged DNA barcodes to the cell surface and isotype controls TOTAL TOTAL TOTAL TOTAL TOTAL

