

Analysis of scRNA-seq data

Konstantin "Kostya" Zaitsev, ITMO University Systems biology workshop, Nice, Sep 22th

Basic steps to analysis of scRNA-seq

- Filtering out "bad" barcodes
- Vormalizing expression levels
- Visualization (tSNE plots)
- Clustering
- Cellular subset annotation

Annotation

- Cell subset annotation is one of the most important steps
- We can look at several immunological expression markers to identify cell subsets

TMO UNIVERSITY

Let's open <u>https://artyomovlab.wustl.edu/sce/?token=PBMC_10k</u>

Immunological markers?

We got plenty of those:

CD19 CD79A CD79B CD14 CD3E GNLY PRF1 FCGR3A SELL CCR7 ITGAX ITGAM HLA-DRA CD8A CD8B CD4 FLT3

Averaged expression

- Sometimes going though all the genes is impractical
- We would like to look at these genes at the same time
- We can average expression of these genes in clusters and use Phantasus to visualize expression of these genes

Averaged expression

Let's first download the averaged expression table

TMO UNIVERSITY

Phantasus

Let's open averaged dataset in phantasus (<u>http://ctlab.itmo.ru/phantasus/</u>)

Click the tal	ble cell conta	aining the fir	st data row	and column.		
Tranpose						
🛛 Data Matri	х					
Column Ar	nnotations					
Row Anno	tations	4	2	2	4	E
	0	1	2	5	4	5
AL627309.1	0.0119918112	0.003686131	0.006607559	0.004858787	0.011751717	0.0225
AL627309.3	0.000608531	0.001034056	0	0	0	0
AL627309.4	0.000484145	0	0	0.000774635	0	0
AL669831.5	0.120118405	0.075664794	0.068124354	0.137209791	0.133213604	0.1771
FAM87B	0.0020024874	0.002958355	0	0.002771901	0	0
LINC00115	0.043656388	0.051804464	0.037082893	0.064993854	0.078415008	0.0573
FAM41C	0.050365532	0.027128928	0.035010025	0.059916194	0.106378213	0.0864
AL645608.3	0.001174258	0	0	0.001962518	0	0.0046
SAMD11	0.000647133	0.003542953	0.001388813	0.001199338	0	0
NOC2L	0 273483929	0 462099596	0 440934288	0 378206906	0 541573239	0 5392

Result should look like that

- ✓ 18 columns (clusters)
- ✓ 21 285 rows (genes)

averaged_log2 🗙	
File Edit View Tools Help Rows Columns -	21,285 rows by 18 columns
id 0 - 0 κ 4 ν 0 × 0 0 0 + 7 0 0 + 4 4 9 + 6 + id	
AL627309.1	
AL627309.3	
AL627309.4	
AL669831.5	
FAM87B	
LINC00115	
FAM41C	
AL645608.3	
SAMD11	
NOC2L	
KLHL17	
PLEKHN1	
PERM1	
AL645608.8	
HES4	
ISG15	
AGRN	
C1orf159	
LINC01342	
AL390719.2	
TTLL10.AS1	
TTLL10	
TNFRSF18	
TNFRSF4	
SDF4	
B3GALT6	
C1QTNF12	
AL162741.1	
UBE2J2	
LINC01786	
SCNN1D	
ACAP3	
PUSL1	
INTS11	
CPTP	
TAS1R3	
DVL1	
MXRA8	

Let's checkout expression of known markers

CD19 CD79A CD79B CD14 CD3E GNLY PRF1 FCGR3A SELL CCR7 ITGAX ITGAM HLA-DRA CD8A CD8B CD4 MKI67

Let's checkout expression of known markers

MO UNIVERSITY

- After genes are selected (tools -> new heat map)
- Then tools-> hierarchical clustering -> Cluster (rows)

averaged_log2 × averaged_log2	×	
File Edit View Tools Help	Rows Columns -	16 rows by 1 ² columns - 0 rows - 0 columns colocted - (A - (
id 0 - 0 м 4 и и и и 0 - 0 й	54666 id	Hierarchical Clustering ×
	CD8A CD8A CD84	Metric One minus pearson correlation •
	CD14 CD35 PRF1 MKI67	Linkage method Average •
	CD4 CD19 ITGAM ITGAX	Cluster Rows •
	CCR7 CD79B CD79A	Group rows by Nothing selected -
		Cluster rows in space of selected columns only
		Cancel

Let's checkout expression of known markers

- After genes are selected (tools -> new heat map)
- Then tools-> hierarchical clustering -> Cluster (rows)

Save this heatmap

- Saving heatmaps is a good thing
- File -> Save Image (Ctrl+S) -> Choose Filename -> Choose format (I prefer svg, svg can be open in browser) -> positive feedback

Come back to all gene and cluster columns

- Come back to the tab with all the genes
- ✓ Tools -> hierarchical clustering -> Cluster: columns

averaged_log2 × averaged_log2 × File Edit View Tools Help Rows Columns CD19 CD79A CD79B CD14 CD3E	GNLY16 matches A 21 305 rows by 19 columns 16 rows 0 columns colocted A The A	
id 0 - 0 0 4 0 0 0 0 0 2 7 7 7 7 9 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0	Hierarchical Clustering	×
FCGR3A SELL GNLY CD8A	Metric One minus pearson correlation	Ŧ
	Linkage method Average	•
CD4 CD19 ITGAM ITGAX	Cluster	•
CCR7 CD798 CD79A AL 627309 1	Group columns by Nothing selected -	
AL627309.3 AL627309.4 AL6827309.4 AL66831.5 FAM878	Cluster columns in space of selected rows only	
FAM41C AL645608.3 SAND1 NOC2L	OK Cancel	
KLHL17 PLEKHN1 PERM1 AL645608.8 HES4		

Come back to all gene and cluster columns

- Come back to the tab with all the genes
- Tools -> hierarchical clustering -> Cluster: columns
- Question: what is cluster 13??

TMO UNIVERSITY

Back to SCE

Let's go back to SCE and try to figure out what's cluster 13

Single-cell Explorer: Beta

PBMC 10k

Open markers tab

verview	Choose the table				
istogram / Bar plot	Cluster				
pression scatter plot	Gene	name	Cluster	Av. log-fold change	
pression violin plot	~	=	13	>	
thway / Gene set plot	PPBP	13		4.6255	(
arkers	PF4	13		3.7103	(
es	CAVINO			2.0702	
	CAVINZ			5.0792	
	GNG11	13		2.9568	(
	TUBB1	13		2.8204	
	CLU	13		2.5954	
	HIST1H2AC	13		2.3941	
	GP9	13		2.1419	
	ACRBP	13		1.9402	
	CD9	13		1.9056	(

TMO UNIVERSITY

Back to SCE

V PF4 is for "platelet factor 4": most likely just contamination

ITMO UNIVERSITY

Summarizing: annotation

- Clusters 1, 2, 11, 7, 8, 14: T cells
 - 7, 8, 11: CD8 T cells
 - 1, 2: CD4 T cells
- Clusters 4, 5, 12: B cells
- Cluster 0, 3, 9, 10: Monocytes
- Cluster 6: NK cells
- Cluster 13: Platelets
- Cluster 15: cDC1, cDC2
- Cluster 16: pDC
- Cluster 17: hematopoietic

scRNA-seq usual way

- Preprocessing
- **V** tSNE / UMAP visualization
- Clustering
- Annotating clusters:
 - Checked known markers
 - Identified markers automatically and looked at them
- Asking scientific questions

Asking scientific questions

- Once you figured out (annotated) cellular subpopulations you can start asking scientific questions
- Clusters 3 and 0 are both monocytes, what's the difference between them?

TMO UNIVERSITY

Differential expression

In bulk RNA-seq we compared groups of several samples with each other

TMO UNIVERSITY

- In single-cell RNA-seq we will compare cell groups against each other:
 - One cluster against the other
 - One cluster against all the other clusters (marker identification)
 - One condition against the other (almost bulk RNA-seq)
 - Same cell type in different conditions

ITMO UNIVERSITY

Let's look at one gene first

ITMO UNIVERSITY

Let's look at one gene first

Finak et al. Genome Biology (2015) 16:278 DOI 10.1186/s13059-015-0844-5

MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data

Greg Finak¹⁺, Andrew McDavid¹⁺, Masanao Yajima¹⁺, Jingyuan Deng¹, Vivian Gersuk², Alex K. Shalek^{3,4,5,6}, Chloe K. Slichter¹, Hannah W. Miller¹, M. Juliana McElrath¹, Martin Prlic¹, Peter S. Linsley² and Raphael Gottardo^{1,7*}

METHOD

Open Access

ITMO UNIVERSITY

Genome Biology

Comparing similar populations

- We can compare clusters 0 and 3 to figure out what is different between these clusters
- The generated table with results will contain several important fields
- Download de_0_vs_3.tsv and open it in excel
- And sort it by log fold change

ITMO UNIVERSITY

Diff expression results

- avg_logFC average log fold change
- p_val p value (bad)
- p_val_adj p value adjusted for multiple hypothesis (good)

	А	В	С	D	E	F	G
1		p_val	avg_logFC	pct.1	pct.2	p_val_adj	
2	S100A8	0	1.109038	1	0.994	0	
3	S100A12	0	1.007759	1	0.933	0	
4	S100A9	8.69E-305	0.754482	1	1	1.66E-300	
5	SLC2A3	1.26E-116	0.675191	0.759	0.377	2.41E-112	
6	CYP1B1	8.98E-113	0.604021	0.747	0.386	1.71E-108	
7	PLBD1	3.75E-117	0.602147	0.89	0.761	7.16E-113	
8	ALOX5AP	1.20E-119	0.60193	0.539	0.148	2.29E-115	
9	SELL	2.81E-136	0.576161	0.774	0.377	5.36E-132	
10	VCAN	1.73E-160	0.504749	0.998	0.958	3.29E-156	
11	RGS2	5.86E-72	0.462258	0.941	0.826	1.12E-67	
12	VNN2	1.85E-95	0.421641	0.595	0.232	3.54E-91	
13	RBP7	2.74E-66	0.420781	0.735	0.512	5.23E-62	
14	PADI4	8.89E-109	0.416832	0.489	0.119	1.70E-104	
15	HMGB2	5.58E-61	0.399081	0.757	0.581	1.06E-56	

- of cells in first group (cluster 0) that have non-zero expression values of gene
- pct.2 % of cells in second group (cluster 3) that have non-zero expression values of gene

Diff expression results (sorted other way)

- avg_logFC average log fold change
- p_val p value (bad)
- p_val_adj p value adjusted for multiple hypothesis (good)

1	A	В	С	D	E	F	G	F
1		p_val	avg_logFC	pct.1	pct.2	p_val_adj		
2	HLA.DPA1	0	-1.35769	0.792	0.984	0		
3	HLA.DPB1	0	-1.31893	0.688	0.969	0		
4	HLA.DRA	0	-1.06345	0.983	0.999	0		
5	HLA.DRB1	0	-1.0302	0.885	0.991	0		
6	HLA.DQB1	4.11E-210	-0.85772	0.332	0.788	7.84E-206		
7	CD74	0	-0.84914	0.991	0.999	0		
8	HLA.DRB5	8.46E-201	-0.70942	0.394	0.829	1.61E-196		
9	HLA.DMA	9.97E-207	-0.69584	0.478	0.877	1.90E-202		
10	HLA.DQA2	9.32E-169	-0.6718	0.2	0.644	1.78E-164		
11	HLA.DQA1	3.37E-144	-0.6574	0.157	0.567	6.43E-140		
12	HLA.DMB	6.77E-168	-0.59253	0.577	0.892	1.29E-163		
13	GALS2	3.03E-153	-0.58006	0.722	0.949	5.77E-149		
14	CPVL	1.74E-184	-0.54994	0.868	0.995	3.33E-180		
15	MARCKS	1.72E-57	-0.47508	0.597	0.782	3.28E-53		
16	iSG15	4.66E-41	-0.45947	0.217	0.397	8.90E-37		
17	LY6E	4.06E-58	-0.45549	0.149	0.388	7.74E-54		
18	B LIPA	8.44E-89	-0.44742	0.587	0.81	1.61E-84		
19	CLEC10A	1.88E-83	-0.42527	0.047	0.29	3.58E-79		
20	IL1B	1.05E-32	-0.42242	0.446	0.631	2.00E-28		
21	PSME2	2.36E-70	-0.41914	0.44	0.712	4.51E-66		

- of cells in first group (cluster 0) that have non-zero expression values of gene
- pct.2 % of cells in second group (cluster 3) that have non-zero expression values of gene

ITMO UNIVERSITY

Asking scientific questions

- Cluster 3 is monocytes with higher expression of MHC class II
- Cluster 0 is just CD14+ monocytes

Let's ask another question

ITMO UNIVERSITY

Let's ask another question

- V Two cd8+ t cell clusters: cluster 8 vs cluster 11
- We will try to look at some genes first and then do pathway analysis to figure out the difference between those
- Let's download the DE list and have a look

Looking at the genes by eye: sorted descending

- Cytotoxic markers
- A lot of cytotoxic markers :)

A	L	- I D	× 🗸	f_{x}			
	А	В	с	D	Е	F	G
1		p_val	avg_logFC	pct.1	pct.2	p_val_adj	
2	KLRB1	2.87E-304	2.894641	1	0.046	5.47E-300	
3	NKG7	6.86E-239	2.128671	0.982	0.098	1.31E-234	
4	CCL5	8.05E-204	1.989348	0.961	0.058	1.54E-199	
5	S100A4	5.25E-291	1.86399	1	0.69	1.00E-286	
6	GZMA	3.13E-213	1.833921	0.961	0.04	5.97E-209	
7	GZMK	1.43E-208	1.82362	0.953	0.021	2.73E-204	
8	KLRG1	4.06E-173	1.278354	0.917	0.052	7.75E-169	
9	CST7	2.73E-156	1.195073	0.844	0.015	5.21E-152	
10	ANXA1	5.02E-135	1.191004	0.917	0.193	9.57E-131	
11	PRF1	5.56E-121	1.101231	0.798	0.064	1.06E-116	
12	CLIC1	4.44E-122	1.056059	0.935	0.353	8.47E-118	
13	НОРХ	4.46E-135	1.033727	0.776	0.009	8.51E-131	
14	MYO1F	5.14E-127	1.013486	0.808	0.052	9.81E-123	
15	TRGC2	2.74E-99	1.010431	0.74	0.067	5.22E-95	
16	NCR3	2.28E-106	0.993501	0.751	0.058	4.35E-102	
17	LYAR	5.46E-102	0.974212	0.842	0.181	1.04E-97	
18	S100A6	1.94E-142	0.970113	0.997	0.902	3.71E-138	
19	IL32	2.83E-122	0.904538	0.992	0.951	5.41E-118	
20	IL7R	1.20E-78	0.859007	0.987	0.868	2.29E-74	
21	PHACTR2	2.45F-86	0.806925	0.672	0.052	4.68F-82	

Looking at the genes by eye: sorted ascending

Some markers

♦ CCR7, SELL?

	А	В	С	D	E	F	G
1		p_val	avg_logFC	pct.1	pct.2	p_val_adj	
2	CD8B	2.95E-175	-1.33658	0.208	0.966	5.63E-171	
3	CCR7	5.77E-126	-0.9418	0.05	0.77	1.10E-121	
4	SELL	4.72E-99	-0.87466	0.14	0.813	9.02E-95	
5	LEF1	1.01E-116	-0.82483	0.034	0.715	1.93E-112	
6	AIF1	2.84E-91	-0.80244	0.127	0.742	5.41E-87	
7	LDHB	3.37E-124	-0.80214	0.839	0.994	6.43E-120	
8	TRABD2A	1.96E-104	-0.79409	0.098	0.764	3.73E-100	
9	RGS10	1.33E-92	-0.76075	0.403	0.908	2.53E-88	
10	FYB1	1.37E-79	-0.75901	0.592	0.96	2.62E-75	
11	LINC02446	3.59E-106	-0.72738	0.002	0.577	6.86E-102	
12	ACTN1	3.52E-95	-0.71595	0.046	0.656	6.71E-91	
13	TMSB10	3.38E-127	-0.70631	1	1	6.45E-123	
14	FOXP1	4.37E-64	-0.69861	0.415	0.89	8.33E-60	
15	PASK	3.98E-72	-0.65459	0.046	0.552	7.59E-68	
16	PIK3IP1	4.18E-57	-0.64525	0.372	0.819	7.98E-53	
17	NELL2	1.79E-67	-0.61723	0.109	0.629	3.41E-63	
18	MAL	3.84E-80	-0.60564	0.021	0.531	7.32E-76	
19	SERINC5	6.59E-78	-0.58531	0.033	0.558	1.26E-73	
20	TCF7	4.90E-56	-0.5777	0.59	0.929	9.35E-52	
21	APBA2	2.48E-82	-0.5739	0.018	0.534	4.73E-78	
22	LDLRAP1	3.86E-54	-0.53299	0.159	0.647	7.36E-50	
23	RPS6	9.37E-122	-0.50551	1	1	1.79E-117	

Let's look at the pathways

- We believe that transcriptional changes do not come at random and are driven by different pathways
- Computationally speaking, pathway is just a set of genes

Hypothesis

We kinda know that cluster 8 are effector Cd8 T cells?

TMO UNIVERSITY

- Cluster 11 are naïve/memory Cd8 t cells?
- Can we look at the pathways to get more information?

msigdb

- Let's open in excel de_8_vs_11.tsv
- Let's select top 100 genes upregulated in activated T cells
- Let's search for the pathways
- <u>http://software.broadinstitute.org/gsea/msigdb/annotate.jsp</u>

msigdb

http://software.broadinstitute.org/ gsea/msigdb/annotate.jsp

Gene Identifiers	Compute Overlaps	Con
(case sensitive)	🕢 H: hallmark gene sets 🖬	۲
	🔲 C1: positional gene sets 🔽	1
KLRB1	C2: curated gene sets 🔽	
CCL5	CGP: chemical and genetic perturbations	
5100A4	Con Concentration and general perturbations	0
GZMA	CP: Canonical pathways	
GZMK	CP:BIOCARTA: BioCarta gene sets	disp
KLRG1	CP:KEGG: KEGG gene sets 2	
CST7	CP:PID: PID gene sets 2	Ger
ANXA1 DRE1	CP:REACTOME: Reactome gene sets	
CLTC1	C3: motif game sets	show
HOPX		
MY01F	MIR: MICTORNA targets	
TRGC2	TFT: transcription factor targets	
NCR3	C4: computational gene sets 2	
LYAR	CGN: cancer gene neighborhoods 2	
TI 32	CM: cancer modules	
IL7R		
PHACTR2		
CEBPD	BP: GO biological process	
SYNE2	🔲 CC: GO cellular component 🖬	
GNLY	MF: GO molecular function 12	
AKL4C \$100A11	C6: oncogenic signatures 2	
	C7: immunologic signatures	
SRGN		
	show top 20 V genesets	
Species: Human 🔻	with FDR q-value less than 0.05	
	min gene set size (optional)	
	max gene set size (optional)	
	compute overlaps	

Investigate Gene Sets

Gain further insight into the biology behind a gene set by using the following tools:

display the gene set expression profile based on a selected compendium of expression data (more...)

compute overlaps with other gene sets in MSigDB (more...)

categorize members of the gene set by gene families (more...)

Compendia expression profiles

- Human tissue compendium
- (Novartis) Global Cancer Map
- (Broad Institute)
- NCI-60 cell lines
- (National Cancer Institute)

display expression profile

Gene families

show gene families

msigdb

Compute Overlaps for Selected Genes

Converted 99 submitted identifiers into 95 entrez genes. click here for details.

Collections	# Overlaps Shown	# Gene Sets in Collections	# Genes in Comparison (n)	# Genes in Universe (N)
CP, H	20	2249	95	38055

Click the gene set name to see the gene set page. Click the number of genes [in brackets] to download the list of genes.

Color bar shading from light green to black, where lighter colors indicate more significant FDR q-values (< 0.05) and black indicates less significant FDR q-values (>= 0.05).

Save to: Excel

Gene Set Name [# Genes (K)]	Description	# Genes in Overlap (k)	k/K	p-value 🛐	FDR q-value 👔
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_ NE_SYSTEM [856]	Cytokine Signaling in Immune system	22		1.87 e ⁻¹⁶	4.2 e ⁻¹³
REACTOME_ADAPTIVE_IMMUNE_SYSTEM [811]	Adaptive Immune System	20		1.13 e ⁻¹⁴	1.27 e ⁻¹¹
REACTOME_SIGNALING_BY_INTERLEUKINS [631]	Signaling by Interleukins	18		2.4 e ⁻¹⁴	1.8 e ⁻¹¹
REACTOME_RESPONSE_TO_ELEVATED_PLATELET LET_CYTOSOLIC_CA2PLUS [132]	Response to elevated platelet cytosolic Ca2+	11		3.49 e ⁻¹⁴	1.96 e ⁻¹¹
HALLMARK_ALLOGRAFT_REJECTION [200]	Genes up-regulated during transplant rejection.	12		1.19 e ⁻¹³	4.45 e ⁻¹¹
HALLMARK_COMPLEMENT [200]	Genes encoding components of the complement system, which is part of the innate immune system.	12		1.19 e ⁻¹³	4.45 e ⁻¹¹
REACTOME_HEMOSTASIS [674]	Hemostasis	17		9.68 e ⁻¹³	3.11 e ⁻¹⁰
REACTOME_PLATELET_ACTIVATION_SIGNALING ING_AND_AGGREGATION [260]	Platelet activation, signaling and aggregation	11		5.77 e ⁻¹¹	1.62 e ⁻⁸
HALLMARK_TNFA_SIGNALING_VIA_NFKB [200]	Genes regulated by NF-kB in response to TNF [GeneID=7124].	10		8.79 e ⁻¹¹	2.2 e ⁻⁸
REACTOME_IMMUNOREGULATORY_INTERACTIONS ONS_BETWEEN_A_LYMPHOID_AND_A_NON_LYMPH MPHOID_CELL [186]	Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	9		1.07 e ⁻⁹	2.41 e ⁻⁷
HALLMARK IL2 STAT5 SIGNALING [200]	Genes up-regulated by STAT5	9		2 02 0-9	4 15 0-7

GeneQuery

Let's take the same 100 genes and ask GeneQuery for similar datasets

ITMO UNIVERSITY

<u>https://artyomovlab.wustl.edu/genequery/searcher/</u>

$\text{GeneQuery}^{\alpha}$

Database species:

 ${\small { \odot } }$ Homo Sapiens ${\displaystyle { \odot } }$ Mus Musculus ${\displaystyle { \odot } }$ Rattus Norvegicus

Query species:

● Homo Sapiens ○ Mus Musculus ○ Rattus Norvegicus

ITMO UNIVERSITY

Gene list (separated by newline/whitespace/tab)

HLA.C	
GPR171	
CDC42EP3	
ITGB2	
PYHIN1	
LST1	
PPIB	
H3F3B	
GAPDH	
UBC	
P4HB	
CD40LG	
CASP1	
RHOC	
GYG1	
CELF2	
MYL12A	
CXXC5	
PFN1	-
	11

Run example -

ITMO UNIVERSITY

GeneQuery

# Experiment title	Module	log ₁₀ (adj.p _{value})	Overlap	GSE	GMT
1 Gene expressions of CD4+ T cells in each developmental stages	3	-30.88	53/558	GSE61697	۲
2 Nave-like Yellow-Fever specific CD8 T cells and reference CD8 T cell subsets in humans	3	-27.84	44/399	GSE65804	۲
3 Gene Expression of Circulating B Lymphocytes for Smoking-related Osteoporosis in Postmenopausal Females	7	-19.02	30/231	GSE13850	۲
4 Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma (transcriptomic profiling)	2	-17.56	37/506	GSE20462	۲
5 Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma	2	-17.56	37/506	GSE20486	۲
6 Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease	6	-16.76	29/194	GSE42057	۲
7 Prognostic value of gene signatures and proliferation in lymph node negative breast cancer	3	-16.70	30/334	GSE46563	۲
8 Gene Expression of Circulating B Lymphocytes for Osteoporosis	4	-16.57	34/389	GSE7429	۲

# Experiment title		Module	log ₁₀ (adj.p _{value})	Overlap	GSE	GMT
1 Gene expressions of CD4+ T cells in each developmental stages		3	-30.88	53/558	GSE61697	۲
2 Nave-like Yellow-Fever specific CD8 T cells and reference CD8 T cell subsets in I	nimans	3	-27 84	44/399	GSE65804	
HOME SEARCH SITE MA	Gene Expression Omnibus GEO Publications FAQ MIAME E Sion Display 2 Not logged i	mail GEO n Login (2)			
Scope: Self V	Format: HTML ▼ Amount: Quick ▼ GEO accession: GSE61697 GO					
Series GSE0109	Query Databets for OSE01097					
Status	Public on May 12, 2015					
Title Organization	Gene expressions of CD4+ 1 cells in each developmental stages					
Organism	Homo sapiens					
Experiment type	Expression profiling by array					
Summary	The development of T cells has been characterized as taking place over three stages: naïve (Tn), central memory (Tcm), and effector memory (Tem) cells. Recently, stem cell memory T cells (Tscm) were found to be the least-developed memory subset. We performed detailed analysis of the gene expression of human CD4+ T cells with clear distinction of the Tn, Tscm, Tcm, and Tem stages.					
Overall design	We sorted Tn, Tscm, Tcm, and Tem CD4+ T cells from the peripheral blood of six healthy volunteers to see the differences of gene expression between each developmental stage.					
Contributor(s)	Takeshita M. Takeuchi T					
Citation(s)	Takeshita M, Suzuki K, Kassai Y, Takiguchi M et al. Polarization diversity of human CD4+ stem cell memory T cells. <i>Clin Immunol</i> 2015 Jul;159(1):107-17. PMID: 25931384					

ITMO UNIVERSITY

6

# Experiment title	Module	log ₁₀ (adj.p _{value})	Overlap	GSE	GMT
1 Gene expressions of CD4+ T cells in each developmental stages	-3	-30.88	53/558	GSE61697	۲
2 Nave-like Yellow-Fever specific CD8 T cells and reference CD8 T cell subsets in humans	3	-27 84	44/399	GSE65804	

These are indeed effectorCD8 T cells

Central_memory_T_cell_biological_rep1_GSM1511432 -Central_memory_T_cell_biological_rep2_GSM1511433 -Central_memory_T_cell_biological_rep3_GSM1511434 Central_memory_T_cell_biological_rep4_GSM1511435 -Central_memory_T_cell_biological_rep5_GSM1511436 -Central_memory_T_cell_biological_rep6_GSM1511437 Effector_memory_T_cell_biological_rep1_GSM1511438 Effector_memory_T_cell_biological_rep2_GSM1511439 -Effector_memory_T_cell_biological_rep3_GSM1511440 -Effector memory T_cell biological rep4_GSM1511441 -Effector_memory_T_cell_biological_rep5_GSM1511442 · Effector_memory_T_cell_biological_rep6_GSM1511443 -Naive_T_cell_biological_rep1_GSM1511420 -Naive_T_cell_biological_rep2_GSM1511421 Naive_T_cell_biological_rep3_GSM1511422 -Naive T cell biological rep4 GSM1511423 -Naive_T_cell_biological_rep5_GSM1511424 Naive T cell biological rep6 GSM1511425 Stem_cell_memory_T_cell_biological_rep1_GSM1511426 -Stem_cell_memory_T_cell_biological_rep2_GSM1511427 -Stem_cell_memory_T_cell_biological_rep3_GSM1511428 · Stem_cell_memory_T_cell_biological_rep4_GSM1511429 -Stem_cell_memory_T_cell_biological_rep5_GSM1511430 Stem_cell_memory_T_cell_biological_rep6_GSM1511431 0 1 2 3 4 5

Averaged pathway expression

- Every cell has very limited coverage in UMIs
- Even abundant transcripts might be hard to detect
- Expression of "one gene" might be not representative

FMO UNIVERSITY

- Averaged expression of gene set is much more robust
- Cd19 Cd79a Cd79b

Averaged pathway expression

- What is average Z score
- We first normalize the gene expression (z score, standard score)

$$Z = \frac{X - \mu}{\sigma}$$

where μ is mean value and σ is the standard deviation

- Then we calculate averaged expression z score
- Cd19 Cd79a Cd79b

Single-cell Explorer: Beta PBMC_10k 🗶

But we can look at whole pathways

Summing up

- Single-cell RNA-seq datasets provide us with a lot of information
- Pathway analysis, phenotype searching (genequery) and other techniques enhance our ability to generate better hypothesis

FMO UNIVERSITY

A lot of similar phenotypes are already present in scRNA-seq data, one just has to carefully evaluate that

