This single cell ATAC-Seq analysis pipeline is designed for intergative analysis of dataset, initially processed by 10x Genomics Cell Ranger ATAC.
In addition to 10x Genomics results it offers:
Required 10x Genomics Cell Cell Ranger ATAC files:
fragments.tsv
- fragments matrix file provided by Cell Rangerpeaks.bed
- peaks file (union of peaks) in case of mergingclusters.csv
- Graph clustering after median normalization, IDF scaling, SVD projection and L2 normalizationprojection.csv
- T-SNE 2d project of all the cellsPipeline steps:
Other pipelines:
Questions and comments are welcome at oleg dot shpynov at jetbrains dot com.
# Configuration
FRAGMENTS_FILE = '/mnt/stripe/shpynov/2019_sc_atacseq_DT1755_3vs3_human/ALAW-XNN-AS011/outs/fragments.tsv.gz'
# PEAKS_FILE = '/mnt/stripe/shpynov/2019_sc_atacseq_DT1755_3vs3_human/ALAW-XNN-AS011/outs/peaks.bed'
PEAKS_FILE = '/mnt/stripe/shpynov/2019_sc_atacseq_DT1755_3vs3_human/span/merged_200_1.0E-10_2.peak.0E-10_2.peak'
CLUSTERS_FILE = '/mnt/stripe/shpynov/2019_sc_atacseq_DT1755_3vs3_human/ALAW-XNN-AS011/outs/analysis/clustering/graphclust/clusters.csv'
TSNE_FILE = '/mnt/stripe/shpynov/2019_sc_atacseq_DT1755_3vs3_human/ALAW-XNN-AS011/outs/analysis/tsne/2_components/projection.csv'
# ! wget http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/hg38.blacklist.bed
# ! guznip hg38.blacklist.bed.gz
BLACKLIST_FILE = '/mnt/stripe/shpynov/2019_sc_atacseq_DT1755_3vs3_human/hg38.blacklist.bed'
# ! wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/gencode.v32.annotation.gtf.gz
# ! gunzip gencode.v32.annotation.gtf.gz
GTF_FILE = '/mnt/stripe/shpynov/2019_sc_atacseq_DT1755_3vs3_human/gencode.v32.annotation.gtf'
# representative DNase hypersensitivity sites for hg38 is missing
DNASE_FILE = None
FACTOR = 'age'
# FACTORS_MAP = {1: 'y_A06', 2: 'y_A12', 3: 'y_A20', 4: 'o_D22', 5: 'o_E04', 6: 'o_E16'}
# def FACTOR_FUNCTION(x):
# for k, v in FACTORS_MAP.items():
# if x.endswith(f'-{k}'):
# return k
# raise Exception(f'Unknown factor ${x}')
FACTORS_MAP = {1: 'young', 2: 'old'}
def FACTOR_FUNCTION(x):
for k in [1, 2, 3]:
if x.endswith(f'-{k}'):
return 1
return 2
OUTPUT_DIR = '/mnt/stripe/shpynov/2019_sc_atacseq_DT1755_3vs3_human/pipeline'
MARKERS_REGIONS = {
'CD68 promoter': 'chr17:7579317-7579780',
'NCR1 promoter': 'chr19:54905688-54906409',
# 'CD19': '',
'CD14': 'chr5:140632594-140633031',
'CD3D': 'chr11:118342568-118342888',
'LCK': 'chr1:32250000-32251599',
'CD4': 'chr12:6789449-6789575',
'CD8A': 'chr2:86808286-86809022',
# 'CD8B 1': 'chr2:86861645-86861768',
# 'CD8B 2': 'chr2:86862428-86862560',
'GZMK': 'chr5:55024074-55024161',
'GZMB': 'chr14:24634056-24634408',
# 'FOXP3': '',
'NCAM': 'chr11:112961425-112962523',
}
%matplotlib inline
%config InlineBackend.figure_format ='retina'
import gc
import glob
import math
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import re
import sys
import seaborn as sns
import umap
sns.set_style("whitegrid")
import re
import tempfile
import glob
import pyBigWig
import json
import h5py
from scipy import io, sparse
from matplotlib.colors import LinearSegmentedColormap
from collections import Counter
from sklearn.cluster import AgglomerativeClustering
from sklearn.manifold import TSNE
from sklearn.preprocessing import Normalizer
from irlb import irlb
from pybedtools import BedTool
from tqdm import tqdm
from scipy.stats import zscore
from matplotlib.backends.backend_pdf import PdfPages
from diffexp import *
# Fix random seed
np.random.seed(0)
figures_path = os.path.join(OUTPUT_DIR, 'figures')
! mkdir -p {figures_path}
def sizeof_fmt(num, suffix='B'):
for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']:
if abs(num) < 1024.0:
return "%3.1f %s%s" % (num, unit, suffix)
num /= 1024.0
return "%.1f %s%s" % (num, 'Yi', suffix)
with PdfPages(os.path.join(figures_path, 'peaks_length.pdf')) as pdf:
peaks_df = pd.read_csv(PEAKS_FILE, sep='\t', header=None)
print('Peaks', len(peaks_df))
sns.distplot(np.log10(peaks_df[2] - peaks_df[1]))
plt.title('Peak length distribution')
plt.xlabel('Log10 Length')
plt.ylabel('Frequency')
if DNASE_FILE is not None:
dnase = BedTool(DNASE_FILE)
peaks_file = BedTool(PEAKS_FILE)
peak_count = peaks_file.count()
overlap = peaks_file.intersect(dnase, wa=True, u=True).count()
peak_by_dnase = 0 if overlap == 0 else overlap * 100.0 / peak_count
overlap = dnase.intersect(peaks_file, wa=True, u=True).count()
dnase_by_peak = overlap * 100.0 / dnase.count()
print('Fraction of peaks overlapping with representative DNAse', int(peak_by_dnase), '%')
print('Fraction of representative DNAse overlapping with peaks', int(dnase_by_peak), '%')
Pipeline uses noise_threshold and duplets_threshold.
Cell Ranger ATAC aggregation: when combining data from multiple GEM groups, the cellranger-atac aggr pipeline automatically equalizes the sensitivity of the groups before merging, which is the recommended approach in order to avoid the batch effect introduced by sequencing depth. Default method: Subsample fragments from higher-depth GEM wells until they all have an equal number of unique fragments per cell.
For each barcode:
This works better in practice as compared to naively using the number of fragments per barcode. We first subtract a depth-dependent fixed count from all barcode counts to model whitelist contamination. This fixed count is the estimated number of fragments per barcode that originated from a different GEM, assuming a contamination rate of 0.02. Then we fit a mixture model of two negative binomial distributions to capture the signal and noise. Setting an odds ratio of 1000, we separate the barcodes that correspond to real cells from the non-cell barcodes.
Scasat If a cell has open peaks below a user defined threshold (default: 50 peaks) in the peak accessibility matrix we would remove that cell from subsequent analysis. Also peaks not observed across a user defined number of valid cells (default: 10 cells) are not considered for further downstream analysis.
SnapATAC alternative approach - 1kb, 5kb and 10kb resolution.
Existing computational methods rely on pre-defined regions of transposase accessibility identified from the aggregate signals. ...
Limitations:
# Fragments file provided by cell ranger
fragments_file_gz = FRAGMENTS_FILE
# BedTools doesn't work with gz file, so unzip it
!gunzip {fragments_file_gz}
fragments_file = re.sub('\.gz', '', fragments_file_gz)
# Intersect using bedtools rather than pybedtools, because they are too slow for files of this size!
def intersect_fragments_and_peaks(fragments_file, peaks_file, blacklist_file):
print('Fragments')
! wc -l {fragments_file}
idf = None
print('Blacklist')
! wc -l {blacklist_file}
print('Peaks')
! wc -l {peaks_file}
with tempfile.TemporaryDirectory(prefix='pipeline', dir=OUTPUT_DIR) as td:
print('Filtering out non-standard chromosomes')
chr_filtered_file = os.path.join(td, 'chromosome_filtered.bed')
! cat {fragments_file} | grep -i -E 'chr[0-9mt]+[^_]' > {chr_filtered_file}
! wc -l {chr_filtered_file}
print('Blacklist regions filtration')
blacklist_filtered_file = os.path.join(td, 'blacklist_filtered.bed')
! bedtools intersect -v -a {chr_filtered_file} -b {blacklist_file} > {blacklist_filtered_file}
! wc -l {blacklist_filtered_file}
print('Fragments and peaks intersection')
intersection_file = os.path.join(td, 'intersection.bed')
! bedtools intersect -wa -wb -a {blacklist_filtered_file} -b {peaks_file} > {intersection_file}
! wc -l {intersection_file}
idf = pd.read_csv(intersection_file, sep='\t', header=None)
icolnames = ['chr', 'start', 'end', 'barcode', 'reads', 'peak_chr', 'peak_start', 'peak_end']
assert len(idf.columns) >= len(icolnames)
idf.rename(columns={o: n for (o, n) in zip(idf.columns[:len(icolnames)], icolnames)}, inplace=True)
idf = idf[icolnames] # Reorder and drop others
idf = idf.astype({'reads': 'int8'}) # Consume less memory
print('Done intersecting of fragments and peaks')
return idf
# Load or compute idf
idfpath = os.path.join(OUTPUT_DIR, 'idf.csv.gz')
if os.path.exists(idfpath):
print(f'Loading IDF from {idfpath}')
idf = pd.read_csv(idfpath, compression='gzip')
else:
idf = intersect_fragments_and_peaks(fragments_file, PEAKS_FILE, BLACKLIST_FILE)
idf.to_csv(idfpath, index=False, compression='gzip')
print(f'Saved IDF to {idfpath}')
def filter_cells(idf, noise_threshold=None, duplets_threshold=None):
# 10x Genomics Cell Ranger ATAC-Seq marks duplicates
# 'count' ignores multiple reads per barcode at same position
pidf = pd.pivot_table(idf, values='reads', index=['barcode'], aggfunc='count')
pidf.reset_index(level=0, inplace=True)
print('Total barcodes', len(pidf))
plt.subplots(nrows=1, ncols=2, figsize=(15, 6))
plt.subplot(1, 2, 1)
# n is for shoulder graph
counts = sorted(pidf['reads'], reverse=True)
df_counts = pd.DataFrame(data={'count': counts, 'n': range(1, len(counts) + 1)})
cells_filter = [True] * len(df_counts)
if noise_threshold is not None:
noise_filter = df_counts['count'] <= noise_threshold
cells_filter = np.logical_and(cells_filter, np.logical_not(noise_filter))
df_noise = df_counts.loc[noise_filter]
print('Noise', len(df_noise))
plt.plot(np.log10(df_noise['n']),
np.log10(df_noise['count']),
label='Noise', linewidth=3, color='red')
if duplets_threshold is not None:
duplets_filter = df_counts['count'] >= duplets_threshold
cells_filter = np.logical_and(cells_filter, np.logical_not(duplets_filter))
df_duplets = df_counts.loc[duplets_filter]
print('Duplets', len(df_duplets))
plt.plot(np.log10(df_duplets['n']),
np.log10(df_duplets['count']),
label='Duplets', linewidth=3, color='orange')
df_cells = df_counts.loc[cells_filter]
cells_filter = [True] * len(pidf)
if noise_threshold is not None:
cells_filter = np.logical_and(cells_filter, pidf['reads'] > noise_threshold)
if duplets_threshold is not None:
cells_filter = np.logical_and(cells_filter, pidf['reads'] < duplets_threshold)
cells = set(pidf.loc[cells_filter]['barcode'])
idfcells = idf.loc[[c in cells for c in idf['barcode']]]
print('Estimated number of cells', len(cells))
plt.title('Cell calling graph')
plt.plot(np.log10(df_cells['n']),
np.log10(df_cells['count']),
label='Cell', linewidth=3, color='green')
plt.xlabel('Log10 number of barcodes')
plt.ylabel('Log10 fragments overlapping Peaks')
plt.legend(loc='upper right')
plt.subplot(1, 2, 2)
sns.distplot(np.log10(df_cells['count']))
plt.title('UMI summary coverage distribution')
plt.xlabel('Log10 coverage')
plt.ylabel('Frequency')
return idfcells
with PdfPages(os.path.join(figures_path, 'cell_calling.pdf')) as pdf:
idfcells = filter_cells(idf, noise_threshold=2000, duplets_threshold=20000)
pdf.savefig()
# Cleanup memory
del idf
gc.collect()
Pipeline Compute number of different UMIs which intersect with peak. Multiple copies of UMI are ignored.
Cell Ranger ATAC-Seq We produce a count matrix consisting of the counts of fragment ends (or cut sites) within each peak region for each barcode. This is the raw peak-barcode matrix and it captures the enrichment of open chromatin per barcode. The matrix is then filtered to consist of only cell barcodes, which is then used in subsequent analysis such as dimensionality reduction, clustering and visualization.
A barcoded fragment may get sequenced multiple times due to PCR amplification. We mark duplicates in order to identify the original fragments that constitute the library and contribute to its complexity.
def cellsdf_to_coverage(idfcells):
print('Barcode vs summary fragments overlap with peaks')
# 10x Genomics Cell Ranger ATAC-Seq marks duplicates
# 'count' ignores multiple reads per barcode at same position
cell_peak_cov_df = pd.pivot_table(idfcells, values='reads',
index=['peak_chr', 'peak_start', 'peak_end', 'barcode'],
aggfunc='count').reset_index()
cell_peak_cov_df['peak'] = cell_peak_cov_df['peak_chr'] + ':' + \
cell_peak_cov_df['peak_start'].astype(str) + '-' + cell_peak_cov_df['peak_end'].astype(str)
cell_peak_cov_df.drop(columns=['peak_chr', 'peak_start', 'peak_end'], inplace=True)
print('Transforming dataframe to peaks x barcode format')
coveragedf = pd.pivot_table(cell_peak_cov_df, index='peak', columns='barcode', values='reads').fillna(0)
# Remove extra labels from pivot_table columns
coveragedf.columns = coveragedf.columns.values
coveragedf.index.name = None
return coveragedf
cov_mtx_path = os.path.join(OUTPUT_DIR, 'coverage.mtx')
if os.path.exists(cov_mtx_path):
print(f'Loading coverage {cov_mtx_path}')
csc = io.mmread(cov_mtx_path)
barcodes = [l.rstrip('\n') for l in open(os.path.join(OUTPUT_DIR, 'barcodes.txt'))]
peaks = [l.rstrip('\n') for l in open(os.path.join(OUTPUT_DIR, 'peaks.txt'))]
coveragedf = pd.DataFrame.sparse.from_spmatrix(csc, index=peaks, columns=barcodes)
else:
coveragedf = cellsdf_to_coverage(idfcells)
print(f'Saving coverage coverage.mtx')
csc = sparse.csc_matrix(coveragedf.values, dtype=int)
io.mmwrite(cov_mtx_path, csc)
print('Saving barcodes.txt')
with open(os.path.join(OUTPUT_DIR, 'barcodes.txt'), 'w') as f:
for b in coveragedf.columns.values:
f.write(b + '\n')
print('Saving peaks.txt')
with open(os.path.join(OUTPUT_DIR, 'peaks.txt'), 'w') as f:
for p in coveragedf.index.values:
f.write(p + '\n')
print('DF size', coveragedf.shape)
# display(coveragedf.head())
# Cleanup memory
del idfcells
gc.collect()
with PdfPages(os.path.join(figures_path, 'umis.pdf')) as pdf:
print('Summary UMI distribution per factor')
factors = [FACTOR_FUNCTION(bc) for bc in coveragedf.columns]
for k, v in tqdm(FACTORS_MAP.items()):
sns.kdeplot(np.log10(coveragedf[coveragedf.columns[np.flatnonzero(np.equal(factors, k))]].sum()), label=v)
plt.title('UMI summary coverage distribution')
plt.xlabel('Log10 coverage')
plt.ylabel('Frequency')
print('Cells per peak with non-zero coverage distribution')
cells_per_peak = np.count_nonzero(coveragedf, axis=1)
with PdfPages(os.path.join(figures_path, 'cells_per_peaks.pdf')) as pdf:
sns.distplot(np.log10(cells_per_peak))
plt.title('Cells with coverage > 0 per peak')
plt.xlabel('Log10 cells')
plt.ylabel('Frequency')
pdf.savefig()
print('Peaks per cell with non-zero coverage filtration')
peaks_per_cell = np.count_nonzero(coveragedf, axis=0)
with PdfPages(os.path.join(figures_path, 'peaks_per_cell.pdf')) as pdf:
sns.distplot(np.log10(peaks_per_cell))
plt.title('Peaks with coverage > 0 per cell')
plt.xlabel('Log10 peaks')
plt.ylabel('Frequency')
pdf.savefig()
Cell Ranger uses normalization to median coverage depth in each UMI - we do the same here.
Seurat we employ a global-scaling normalization method “LogNormalize” that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result.
SnapATAC does not require population-level peak annotation, and instead assembles chromatin landscapes by directly clustering cells based on the similarity of their genome-wide accessibility profile. Using a regression-based normalization procedure, SnapATAC adjusts for differing read depth between cells.
print('UMI normalization by median fragments count per barcode (RPM)')
# (peaks x barcodes) format
size_factors = estimate_size_factors(coveragedf.values)
normdf = coveragedf / size_factors # per column, i.e. barcode
Pipeline
Cell Ranger ATAC removed features selection with zero variance.
SnapATAC The vast majority of the items in the cell-by-bin count matrix is “0”, some items have abnormally high coverage (often > 200) perhaps due to alignment error. Bins of exceedingly high coverage which likely represent the genomic regions that are invariable between cells such as housekeeping gene promoters were removed. We noticed that filtering bins of extremely low coverage perhaps due to random noise can also improve the robustness of the downstream clustering analysis.
Signac The largely binary nature of scATAC-seq data makes it challenging to perform ‘variable’ feature selection, as we do for scRNA-seq. Instead, we can choose to use only the top n% of features (peaks) for dimensional reduction, or remove features present in less that n cells with the FindTopFeatures function. Here, we will all features, though we note that we see very similar results when using only a subset of features (try setting min.cutoff to ‘q75’ to use the top 25% all peaks), with faster runtimes. Features used for dimensional reduction are automatically set as VariableFeatures for the Seurat object by this function. See for explanation: https://satijalab.org/signac/articles/pbmc_vignette.html
Seurat calculate a subset of features that exhibit high cell-to-cell variation in the dataset (i.e, they are highly expressed in some cells, and lowly expressed in others). We and others have found that focusing on these genes in downstream analysis helps to highlight biological signal in single-cell datasets.
def feature_selection(df, stdp=1, meanp=99):
# df is (peaks x barcodes)
means = df.T.mean()
stds = df.T.std()
print('Feature selection: filter out most highly covered peaks as alignment errors or housekeeping genes.')
means_high = np.percentile(means, meanp)
peaks_filter = means < means_high
print('Feature selection: filter out non-variable peaks.')
stds_low = np.percentile(stds, stdp)
peaks_filter = np.logical_and(stds_low < stds, means < means_high)
return peaks_filter
# Normalization to peak length to take into account signal strength, not total coverage
with PdfPages(os.path.join(figures_path, 'feature_selection_before.pdf')) as pdf:
# df is (peaks x barcodes)
sns.jointplot(x='mean', y='std', data=pd.DataFrame({'mean': normdf.T.mean(), 'std': normdf.T.std()}))
pdf.savefig()
plt.show
with PdfPages(os.path.join(figures_path, 'feature_selection_after.pdf')) as pdf:
peaks_filter = feature_selection(normdf)
sns.jointplot(x='mean', y='std', data=pd.DataFrame({'mean': normdf.loc[peaks_filter].T.mean(),
'std': normdf.loc[peaks_filter].T.std()}))
pdf.savefig()
plt.show
print('Total peaks', len(normdf))
print('Filtered peaks', sum(peaks_filter))
Pipeline Use Cell Ranger ATAC approach and IRLB code for dimensionality reduction.
def plot_colored(data, c,
clusters=False, show_centers=False,
size=10, alpha=0.5, no_ticks=True):
""" Plot colored scatterplot """
cmap = plt.cm.get_cmap('jet', len(set(c))) if clusters else plt.cm.viridis
fig, ax = plt.subplots(1, figsize=(10, 8))
sc = plt.scatter(data[:, 0], data[:, 1],
c=c, cmap=cmap,
marker='o',
alpha=alpha,
s=size)
if no_ticks:
plt.setp(ax, xticks=[], yticks=[])
if clusters and show_centers:
# For each cluster, we add a text with name
for cluster in set(c):
cluster_mean = data[np.flatnonzero(c == cluster), :].mean(axis=0)
plt.text(cluster_mean[0], cluster_mean[1], str(cluster),
horizontalalignment='center', size='large', color='black', weight='bold')
if clusters:
cbar = plt.colorbar(boundaries=np.arange(len(set(c)) + 1) + min(c) - 0.5)
cbar.set_ticks(np.arange(len(set(c))) + min(c))
cbar.set_ticklabels(list(set(c)))
else:
plt.colorbar()
print('Check marker regions of interest')
peaks = normdf.index[np.flatnonzero(peaks_filter)]
marker_regions_peaks = {}
for k, r in MARKERS_REGIONS.items():
cr, sr, er = re.split(':|-', r)
tp = [(c,s,e) for (c,s,e) in map(lambda p: re.split(':|-', p), peaks)
if c == cr and not (int(er) < int(s) or int(e) < int(sr))]
assert tp, f'{k} not found'
assert len(tp) == 1, f'Too many peaks for region {k}'
cp, sp, ep = tp[0]
marker_regions_peaks[k] = peak = f'{cp}:{sp}-{ep}'
print('Region', k, 'Peak', peak)
# for name, size in sorted(((name, sys.getsizeof(value)) for name, value in locals().items()),
# key= lambda x: -x[1])[:10]:
# print("{:>30}: {:>8}".format(name, sizeof_fmt(size)))
Cell Ranger ATAC default method is LSA.
We found that the combination of these normalization techniques obviates the need to remove the first component. The number of dimensions is fixed to 15 as it was found to sufficiently separate clusters visually and in a biologically meaningful way when tested on peripheral blood mononuclear cells (PBMCs).
def lsa(df, dim):
print('Normalizing by IDF')
idf = np.log1p(df.shape[1]) - np.log1p(np.count_nonzero(df, axis=1))
df_idf = df.multiply(idf, axis=0).T # Transpose to (barcodes x peaks) format
del idf # Cleanup
print('Performing IRLBA without scaling or centering')
# Number of dimensions recommended by Cell Ranger ATAC-Seq algorithm
(_, _, v, _, _) = irlb(df_idf, dim)
# project the matrix to complete the transform: X --> X*v = u*d
df_idf_irlb = df_idf.dot(v)
assert df_idf_irlb.shape == (df_idf.shape[0], dim), 'check dimensions'
del df_idf # Cleanup
# IMPORTANT! We found that the combination of these normalization techniques
# obviates the need to remove the first component.
print('Normalization each barcode data point to unit L2-norm in the lower dimensional space')
idf_irlb_l2 = Normalizer(norm='l2').fit_transform(df_idf_irlb) # (n_samples, n_features)
return pd.DataFrame(idf_irlb_l2, index=df_idf_irlb.index, columns=df_idf_irlb.columns)
# NO UMI normalization required for LSA approach!
# IDF is invariant to scales, IRLBA don't need scaling.
# Normalization to peak length to take into account signal strength, not total coverage
result_lsa = lsa(normdf.loc[peaks_filter], 20)
# UMAP visualization
umap_coords = pd.DataFrame(umap.UMAP().fit_transform(result_lsa.values)[:, :2],
index=result_lsa.index,
columns=['umap1', 'umap2'])
print('Saving UMAP coordinates to umap.tsv')
umap_coords.to_csv(os.path.join(OUTPUT_DIR, 'umap.tsv'), sep='\t')
print('UMAP on LSA normalized vs log10 coverate depth')
with PdfPages(os.path.join(figures_path, 'umap.pdf')) as pdf:
plot_colored(umap_coords.values, np.log10(coveragedf.sum()), size=20)
pdf.savefig()
print('tSNE on LSA normalized vs', FACTOR, FACTORS_MAP)
with PdfPages(os.path.join(figures_path, f'umap_{FACTOR}.pdf')) as pdf:
factors = [FACTOR_FUNCTION(bc) for bc in result_lsa.index]
plot_colored(umap_coords.values, factors, clusters=True, size=20, alpha=0.01)
pdf.savefig()
def n_rows_columns(n, maxcols=5):
ncols = max([r for r in range(1, min(maxcols, math.ceil(math.sqrt(n)) + 1)) if n % r == 0])
nrows = int(n / ncols)
return nrows, ncols
def plot_colored_split(data, c, size=10, alpha=0.5, contrast = 100):
""" Plot colored scatterplot split by factors"""
cmap = plt.cm.get_cmap('jet', len(set(c)))
nrows, ncols = n_rows_columns(len(set(c)))
plt.subplots(nrows=nrows, ncols=ncols, figsize=(5 * ncols, 5 * nrows))
xmin, xmax = np.min(data[:,0]), np.max(data[:,0])
xlim = (xmin - 0.1 * (xmax - xmin), xmax + 0.1 * (xmax - xmin)) # +10% margin
ymin, ymax = np.min(data[:,1]), np.max(data[:,1])
ylim = (ymin - 0.1 * (ymax - ymin), ymax + 0.1 * (ymax - ymin)) # +10% margin
for i, f in enumerate(tqdm(set(c))):
ax = plt.subplot(nrows, ncols, i + 1)
plt.setp(ax, xticks=[], yticks=[])
plt.xlim(xlim)
plt.ylim(ylim)
plt.title(str(f))
# Plot slightly visible other as gray
nfdata = data[np.flatnonzero(np.logical_not(np.equal(c, f))), :]
plt.scatter(nfdata[:,0], nfdata[:,1],
color='gray',
marker='o',
alpha=alpha / contrast,
s=size)
# And factor data
fdata = data[np.flatnonzero(np.equal(c, f)), :]
plt.scatter(fdata[:,0], fdata[:,1],
color=cmap(i),
marker='o',
alpha=alpha,
s=size)
print(FACTORS_MAP)
with PdfPages(os.path.join(figures_path, f'umap_{FACTOR}_spit.pdf')) as pdf:
plot_colored_split(umap_coords.values, factors, size=5, alpha=0.01)
pdf.savefig()
Clustering should:
def graph_clustering(result, n_clusters):
# Ward method as default
print('Clustering', n_clusters)
clusters = AgglomerativeClustering(n_clusters=n_clusters).fit_predict(result).astype(int)
cluster_counter = Counter()
for c in clusters:
cluster_counter[c] += 1
# reorder clusters by size descending
clusters_reord = np.zeros(len(clusters), dtype=int)
for i, (c, n) in enumerate(cluster_counter.most_common()):
clusters_reord[clusters == c] = i
return clusters_reord
# 10-15 clusters is recommened values by Cell Ranger ATAC-Seq
n_clusters = 15
clusters = graph_clustering(result_lsa, n_clusters)
print(f'Saving clusters to clusters{n_clusters}.tsv')
clusters_df = pd.DataFrame({'cluster': clusters}, index=result_lsa.index)
clusters_df.to_csv(os.path.join(OUTPUT_DIR, f'clusters{n_clusters}.tsv'))
print('QC clustermap of normalized LSA coordinates and clusters')
n = 100
print('Sampling', n, 'cells from each cluster')
ts = []
for cluster in tqdm(range(n_clusters)):
t = result_lsa.loc[clusters == cluster].sample(n=n, axis=0, replace=True).copy()
t['cluster'] = cluster / n_clusters # Normalize cluster number to 0-1
ts.append(t)
with PdfPages(os.path.join(figures_path, 'cluster_lsa.pdf')) as pdf:
sns.clustermap(pd.concat(ts), col_cluster=False, row_cluster=False, figsize=(8, 8))
pdf.savefig()
def clusters_sizes(df, value):
df_sum = df[['cluster', value]].groupby(['cluster']).sum().reset_index()
plt.figure(figsize=(10, 4))
cmap=plt.cm.get_cmap('jet', len(df_sum))
sns.barplot(x=df_sum.index, y=df_sum[value],
palette=[cmap(i) for i in range(len(df_sum))])
def clusters_factors(df, value, FACTORS_MAP):
df_sum = df[['cluster', value]].groupby(['cluster']).sum().reset_index()
df_sum_factor = df[['cluster', FACTOR, value]].groupby(['cluster', FACTOR]).sum().reset_index()
plt.figure(figsize=(10, 4))
cmap=plt.cm.get_cmap('jet', len(FACTORS_MAP))
# Plot 1 - background - "total"
sns.barplot(x = df_sum.index, y = np.ones(len(df_sum)) * 100, color = cmap(0), alpha=0.5)
percentages = np.zeros(len(df_sum))
for i, (k,v) in enumerate(FACTORS_MAP.items()):
if i > 0:
percentages += np.array(df_sum_factor.loc[df_sum_factor[FACTOR] == k][value]) / np.array(df_sum[value]) * 100.0
# Plot N - overlay - "bottom" series
bottom_plot = sns.barplot(x=df_sum.index, y=percentages, color = cmap(i), alpha=0.5)
legend_colors = [plt.Rectangle((0,0),1,1, fc=cmap(i), edgecolor = 'none') for i in range(len(FACTORS_MAP))]
legend_names = [v for _,v in FACTORS_MAP.items()]
l = plt.legend(legend_colors, legend_names, prop={'size': 16})
l.draw_frame(False)
#Optional code - Make plot look nicer
sns.despine(left=True)
bottom_plot.set_ylabel('Cluster composition ' + FACTOR + ' %')
bottom_plot.set_xlabel('Cluster')
print('Computing summary for clusters by', FACTOR)
print(FACTORS_MAP)
t = pd.DataFrame({FACTOR: [FACTOR_FUNCTION(bc) for bc in coveragedf.columns],
'cluster': clusters, 'counts': np.ones(len(coveragedf.columns))},
index=coveragedf.columns)
display(t[[FACTOR, 'counts']].groupby([FACTOR]).sum())
display(t[['cluster', 'counts']].groupby(['cluster']).sum())
with PdfPages(os.path.join(figures_path, 'clusters_sizes.pdf')) as pdf:
clusters_sizes(t, 'counts')
pdf.savefig()
with PdfPages(os.path.join(figures_path, f'clusters_{FACTOR}.pdf')) as pdf:
clusters_factors(t, 'counts', FACTORS_MAP)
pdf.savefig()
print('Summary UMI distribution per cluster')
with PdfPages(os.path.join(figures_path, 'clusters_umi.pdf')) as pdf:
plt.figure(figsize=(10, 6))
for c in tqdm(set(clusters)):
sns.kdeplot(np.log10(coveragedf.T.iloc[np.flatnonzero(clusters == c)].sum(axis=1)),
label=str(c))
plt.title('UMI summary coverage distribution')
plt.xlabel('Summary coverage')
plt.ylabel('Frequency')
plt.legend()
pdf.savefig()
print('Peaks with non-zero coverage distribution per cluster')
with PdfPages(os.path.join(figures_path, 'clusters_cell_peaks.pdf')) as pdf:
plt.figure(figsize=(10, 6))
for c in tqdm(set(clusters)):
sns.kdeplot(np.log10(np.count_nonzero(coveragedf.T.iloc[np.flatnonzero(clusters == c)], axis=1)),
label=str(c))
plt.title('Peaks per cell')
plt.xlabel('Log10 peaks')
plt.ylabel('Frequency')
plt.legend()
pdf.savefig()
print('UMAP on LSA normalized vs graph clusters')
with PdfPages(os.path.join(figures_path, 'umap_clusters.pdf')) as pdf:
plot_colored(umap_coords.values, clusters, clusters=True, show_centers=True, size=20, alpha=0.3)
pdf.savefig()
print('UMAP on LSA normalized vs graph clusters')
with PdfPages(os.path.join(figures_path, 'umap_clusters_split.pdf')) as pdf:
plot_colored_split(umap_coords.values, clusters, size=5)
pdf.savefig()
print('Processing t-SNE on L2-normalized data')
tsne_coords = pd.DataFrame(TSNE(n_components=2).fit_transform(result_lsa.values),
index=result_lsa.index,
columns=['tsne1', 'tsne2'])
print('t-SNE done!')
# display(tsne_coords.head())
print('Saving tSNE coordinates to tsne.tsv')
tsne_coords.to_csv(os.path.join(OUTPUT_DIR, 'tsne.tsv'), sep='\t')
print('tSNE on LSA normalized vs log10 coverate depth')
with PdfPages(os.path.join(figures_path, 'tsne.pdf')) as pdf:
plot_colored(tsne_coords.values, np.log10(coveragedf.sum()), size=20)
pdf.savefig()
print('tSNE on LSA normalized vs', FACTOR, FACTORS_MAP)
factors = np.array([FACTOR_FUNCTION(bc) for bc in result_lsa.index])
with PdfPages(os.path.join(figures_path, f'tsne_{FACTOR}.pdf')) as pdf:
plot_colored(tsne_coords.values, factors, clusters=True, size=20, alpha=0.01)
pdf.savefig()
print(FACTORS_MAP)
with PdfPages(os.path.join(figures_path, f'tsne_{FACTOR}_split.pdf')) as pdf:
plot_colored_split(tsne_coords.values, factors, alpha=0.01)
pdf.savefig()
print('tSNE on LSA normalized vs graph clusters')
with PdfPages(os.path.join(figures_path, 'tsne_clusters.pdf')) as pdf:
plot_colored(tsne_coords.values, clusters, clusters=True, show_centers=True, size=20, alpha=0.5)
pdf.savefig()
with PdfPages(os.path.join(figures_path, 'tsne_clusters_split.pdf')) as pdf:
plot_colored_split(tsne_coords.values, clusters, size=5)
pdf.savefig()
def regions_plot(regions, df, xs, ys, factors, clusters, binary):
print(f'Coverage t-SNE, distribution and fraction on non-zero covered peaks w.r.t {FACTOR} and clusters')
fig = plt.figure(figsize=(4*4, 4*len(regions)))
grid = plt.GridSpec(nrows=len(regions), ncols=8, wspace=0.4, hspace=0.3, figure=fig)
for i, (k, peak) in enumerate(regions.items()):
vals = df.loc[peak]
print(k, peak, 'cov>0:', sum(vals > 0), 'of', len(vals), 'max cov:', max(vals))
zs = zscore(vals)
ax = plt.subplot(grid[i, 0:2])
# Plot zscores scatter plot with 2 segments colormap blue-white-red
cmap = LinearSegmentedColormap.from_list(name='zscore',
colors=[(0, 'darkblue'), ((0 - np.min(zs)) / (np.max(zs) - np.min(zs)), 'white'), (1, 'red')])
plt.setp(ax, xticks=[], yticks=[])
ax.scatter(xs, ys, marker='.', c=zs, cmap=cmap, s=2, alpha=0.2)
plt.title(k)
plt.xlabel('tSNE1')
plt.ylabel('tSNE2')
t = pd.DataFrame({'cluster': clusters, 'factor': factors,
'val': [min(v, 1) for v in vals] if binary else vals})
# display(t.head())
# print(t.shape)
ax = plt.subplot(grid[i, 2])
tf = pd.pivot_table(t, values='val', index=['factor'], aggfunc='mean').reset_index()
# display(tf.head())
sns.barplot(x='factor', y='val', data=tf)
ax = plt.subplot(grid[i, 3:])
tc = t.groupby(['cluster', 'factor']).mean().reset_index()
# pd.pivot_table(t.grou, values='val', index=['cluster', 'factor'], aggfunc='mean').reset_index()
# display(tc.head())
sns.barplot(x='cluster', y='val', data=tc, hue='factor')
# break
print('Analysing REGIONS of interest TSNE')
with PdfPages(os.path.join(figures_path, 'tsne_markers.pdf')) as pdf:
regions_plot(marker_regions_peaks, coveragedf, tsne_coords['tsne1'], tsne_coords['tsne2'],
[FACTORS_MAP[f] for f in factors], clusters, True)
pdf.savefig()
print('Analysing REGIONS of interest UMAP')
with PdfPages(os.path.join(figures_path, 'umap_markers.pdf')) as pdf:
regions_plot(marker_regions_peaks, coveragedf, umap_coords['umap1'], umap_coords['umap2'],
[FACTORS_MAP[f] for f in factors], clusters, True)
pdf.savefig()
Pipeline Split UMI reads by clusters and use RPKM normalization.
Seurat We created pseudo-bulk ATAC-seq profiles by pooling together cells with for each cell type. Each cell type showed enriched accessibility near canonical marker genes. Chromatin accessibility tracks are normalized to sequencing depth (RPKM normalization) in each pooled group.
visualization.
def write_bigwigs(barcodes, clusters, bigwigs_path, step):
print('Loading full fragments dataframe')
fdf = pd.read_csv(fragments_file, sep='\t', names=['chr', 'start', 'end', 'barcode', 'reads'])
print('Aggregating fragments and clusters')
t = pd.DataFrame({'barcode': barcodes, 'cluster': clusters})
df_for_bigwigs = pd.merge(left=fdf, right=t,
left_on='barcode', right_on='barcode')
for cluster in set(clusters):
bw_path = os.path.join(bigwigs_path, f'cluster_{cluster}.bw')
print('Processing cluster', cluster, bw_path)
df_for_bigwigs_cluster = df_for_bigwigs.loc[df_for_bigwigs['cluster'] == cluster]
chr_lengths = df_for_bigwigs_cluster[['chr', 'end']].groupby('chr').max().reset_index()
with pyBigWig.open(bw_path, 'w') as bw:
bw.addHeader(list(zip(chr_lengths['chr'], chr_lengths['end'])))
for chromosome in tqdm(chr_lengths['chr']):
df_for_bigwigs_cluster_chr =\
df_for_bigwigs_cluster.loc[df_for_bigwigs_cluster['chr'] == chromosome].sort_values(['start', 'end'])
starts = list(df_for_bigwigs_cluster_chr['start'])
ends = list(df_for_bigwigs_cluster_chr['end'])
reads = list(df_for_bigwigs_cluster_chr['reads'])
chr_length = int(chr_lengths.loc[chr_lengths['chr'] == chromosome]['end'])
values = np.zeros(int(math.floor(chr_length / step)) + 1)
for i in range(len(df_for_bigwigs_cluster_chr)):
# Ignore PCR duplicates here!
# v = reads[i]
v = 1.0
si = int(math.floor(starts[i] / step))
ei = int(math.floor(ends[i] / step))
if ei == si:
values[si] += v
else:
values[si] += v / 2
values[ei] += v / 2
non_zero = values > 0
non_zero_inds = np.flatnonzero(non_zero)
starts_np = non_zero_inds * step
ends_np = (non_zero_inds + 1) * step
values_np = values[non_zero]
# RPM normalization
values_np = values_np * (1000000.0 / sum(values_np))
chroms_np = np.array([chromosome] * sum(non_zero))
bw.addEntries(chroms_np, starts=starts_np, ends=ends_np, values=values_np)
print('Done')
step = 200
bigwigs_path = os.path.join(OUTPUT_DIR, 'bigwig')
! mkdir -p {bigwigs_path}
write_bigwigs(clusters_df.index, clusters, bigwigs_path, step)
print('Preprocess GTF file')
gtf_file = GTF_FILE
transcripts_bed = gtf_file + '.bed'
if not os.path.exists(transcripts_bed):
GTF_TO_BED_SH = """
TNF=$(cat $1 | grep transcript_id | grep -v '#' | head -n 1 | awk '{for (i=4; i<NF; i++) {if ($3=="transcript" && $i=="gene_name") print (i+1)}}')
cat $1 | awk -v TNF=$TNF -v OFS="\t" '{if ($3=="transcript") {print $1,$4-1,$5,$TNF,0,$7}}' | tr -d '";' | sort -k1,1 -k2,2n -k3,3n --unique > $2
"""
with tempfile.NamedTemporaryFile(prefix='gtf_to_bed', suffix='.sh', delete=False) as f:
f.write(GTF_TO_BED_SH.encode('utf-8'))
f.close()
! bash {f.name} {gtf_file} {transcripts_bed}
print('Transcripts bed file', transcripts_bed)
transcripts_tss = gtf_file + '.tss'
if not os.path.exists(transcripts_tss):
BED_TO_TSS_SH = """
cat $1 | awk -v OFS="\t" '{if ($6=="+") {print $1, $2, $2+1, $4, 0, "+"} else {print $1,$3-1,$3, $4, 0, "-"}}' | sort -k1,1 -k2,2n -k3,3n --unique > $2
"""
with tempfile.NamedTemporaryFile(prefix='bed_to_tss', suffix='.sh', delete=False) as f:
f.write(BED_TO_TSS_SH.encode('utf-8'))
f.close()
! bash {f.name} {transcripts_bed} {transcripts_tss}
print('Transcripts tss file', transcripts_tss)
Pipeline Preprocess GENES to TSS and use bedtools closest -D b
to report distance to TSS, upstream or downstream w.r.t. the gene strand.
Cell Ranger ATAC We use bedtools closest -D b
to associate each peak with genes based on closest transcription start sites (packaged within the reference) such that the peak is within 1000 bases upstream or 100 bases downstream of the TSS.
def locations_closest_genes(locations, transcripts_tss):
print('Annotate list of locations in format "chr:start-end" with closest tss of genes')
with tempfile.NamedTemporaryFile(delete=False) as f:
# Save index to restore original order after sorting
for i, t in enumerate([re.split(':|-', p) for p in locations]):
f.write('{}\t{}\t{}\t{}\n'.format(*t, i).encode('utf-8'))
f.close()
closest_file = f.name + '.closest'
sorted_file = f.name + '.sorted'
! sort -k1,1 -k2,2n {f.name} > {sorted_file}
! bedtools closest -a {sorted_file} -b {transcripts_tss} -D b > {closest_file}
closest_df = pd.read_csv(
closest_file, sep='\t',
names=['chr', 'start', 'end', 'index',
'gene_chr', 'gene_start', 'gene_end', 'gene', 'gene_score', 'gene_strand', 'distance'])
# Restore original sorting as
closest_df.sort_values(by=['index'], inplace=True)
# Pick only first closest gene in case of several
closest_df.drop_duplicates(['index'], inplace=True)
return closest_df[['chr', 'start', 'end', 'gene', 'distance']]
closest_genes = locations_closest_genes(list(coveragedf.index), transcripts_tss)
# Restore 'peak' to be able to merge on it
closest_genes['peak'] = closest_genes['chr'] +\
':' + closest_genes['start'].astype(str) +\
'-' + closest_genes['end'].astype(str)
display(closest_genes.head())
# Transpose to (barcodes x peaks) format
t = normdf.T
# Per cluster mean values for peaks
clusters_means = {str(c): t.loc[clusters == c].mean() for c in set(clusters)}
clusters_means_df = pd.DataFrame(clusters_means).reset_index()[[str(c) for c in set(clusters)]]
clusters_means_genes_df = pd.concat([closest_genes.reset_index(), clusters_means_df], axis=1).drop(columns=['index'])
# Save peak without dashes or colons
clusters_means_genes_df['peak'] = [re.sub('[:-]', '_', p) for p in clusters_means_genes_df['peak']]
print('Saving clusters peaks_means to clusters_peaks_values.tsv')
display(clusters_means_genes_df.head())
clusters_means_genes_df.to_csv(os.path.join(OUTPUT_DIR, 'clusters_peaks_values.tsv'), sep='\t', index=False)
print('Hierarchical clustering of clusters mean values')
with PdfPages(os.path.join(figures_path, 'clusters_hclust.pdf')) as pdf:
sns.clustermap(clusters_means_genes_df[[str(i) for i in set(clusters)]],
col_cluster=True, row_cluster=False, figsize=(10, 5), cmap=plt.cm.viridis)
pdf.savefig()
Pipeline
Use Cell Ranger ATAC to get differential markers.
Cell Ranger ATAC For each peak we perform test cluster vs others, so that several clusters may yield significant results vs others, we take into account only the cluster with greatest mean value.\ Test is is perfromed using Cell Ranger default testing procedure based on Negative Binomial GLM.
# Launch 10x Genomics Cell Ranger DE
def run_10x_differential_expression(df, clusters, fdr=0.05):
""" Compute differential expression for each cluster vs all other cells
Args: df - feature expression data (peak x barcode)
clusters - 0-based cluster labels
fdr - false discovery rate"""
peaks = list(df.index)
distinct_clusters = set(clusters)
print('Detected clusters', len(distinct_clusters))
print("Computing params...")
m = df.values
sseq_params = compute_sseq_params(m)
cluster_markers = []
for cluster in distinct_clusters:
in_cluster = clusters == cluster
group_a = np.flatnonzero(in_cluster)
group_b = np.flatnonzero(np.logical_not(in_cluster))
print(f'Computing DE for cluster {cluster}...')
de_result = sseq_differential_expression(m, group_a, group_b, sseq_params)
de_result['cluster'] = [cluster] * len(de_result)
de_result['peak'] = peaks
passed_fdr = de_result['adjusted_p_value'] < fdr
passed_log2_fc = de_result['log2_fold_change'] > 0
# Filter out different by statistical tests with log2 fold change > 0
passed = np.logical_and(passed_fdr, passed_log2_fc)
print('DE:', sum(passed), 'of', len(de_result),
'FDR:', sum(passed_fdr), 'log2fc>0:', sum(passed_log2_fc))
passed_de = de_result.loc[passed]
cluster_de_markers = passed_de[
['cluster', 'peak', 'norm_mean_a', 'norm_mean_b', 'log2_fold_change', 'p_value', 'adjusted_p_value']
].rename(columns={'norm_mean_a': 'norm_mean_cluster', 'norm_mean_b': 'norm_mean_others'})
cluster_markers.append(cluster_de_markers)
return pd.concat(cluster_markers)
# Cell Ranger ATAC like differential analysis
# Each peak is tested independently, no normalization to peak length required.
markers = run_10x_differential_expression(coveragedf.loc[peaks_filter], clusters)
print('Total markers', len(markers))
# display(markers.head())
print('Number of differential markers per cluster')
t = markers[['cluster']].copy()
t['count'] = 1
display(pd.pivot_table(t, values='count', index=['cluster'], aggfunc=np.sum))
markers_with_genes = pd.merge(left=markers[['cluster', 'norm_mean_cluster', 'norm_mean_others',
'log2_fold_change', 'p_value', 'adjusted_p_value', 'peak']],
right=closest_genes,
left_on='peak',
right_on='peak')
# Save peak without dashes or colons
markers_with_genes['peak'] = [re.sub('[:-]', '_', p) for p in markers_with_genes['peak']]
# rearrange columns, sort
markers_with_genes = markers_with_genes[['chr', 'start', 'end', 'peak',
'cluster', 'norm_mean_cluster', 'norm_mean_others',
'log2_fold_change', 'p_value', 'adjusted_p_value',
'gene', 'distance']].sort_values(by=['cluster', 'adjusted_p_value'])
# display(markers_with_genes.head())
print('Saving all the markers', len(markers_with_genes), 'to markers.tsv')
markers_with_genes.to_csv(os.path.join(OUTPUT_DIR, 'markers.tsv'), sep='\t', index=None)
def get_top_markers(df, n_clusters, top=100):
top_markers = pd.concat([
df.loc[df['cluster'] == c].sort_values(by=['adjusted_p_value']).head(top)
for c in range(0, n_clusters)])
top_markers['peak'] = top_markers['chr'] +\
':' + top_markers['start'].astype(str) + '-'\
+ top_markers['end'].astype(str)
return top_markers
print('Computing Z scores for mean values in cluster for top markers')
top_markers = get_top_markers(markers_with_genes, 15, top=100)
t = normdf.T # Transpose to (barcodes x peaks) format
t = t[list(top_markers['peak'])] # top markers only
t = pd.concat([pd.DataFrame(t.loc[clusters == cluster].mean()).T for cluster in set(clusters)])
t.index = range(n_clusters)
# Transform to Z-score
for c in t.columns:
t[c] = zscore(t[c])
print('Clustermap of Z scores')
with PdfPages(os.path.join(figures_path, 'markers_z.pdf')) as pdf:
sns.clustermap(t.T, col_cluster=False, row_cluster=False, figsize=(10, 10), cmap=plt.cm.seismic)
pdf.savefig()
def show_top_markers_z(normdf, xs, ys, markers_with_genes, clusters, n_clusters, top=100):
t = normdf
top_markers = get_top_markers(markers_with_genes, n_clusters, top)
nrows, ncols = n_rows_columns(n_clusters)
plt.subplots(nrows=nrows, ncols=ncols, figsize=(5 * ncols, 4 * nrows))
for i, cluster in enumerate(tqdm(set(clusters))):
# Table (marker for cluster x cells)
markers_df = t.loc[top_markers.loc[top_markers['cluster'] == cluster]['peak']].T.copy()
# Z scale for each marker peak across all cells
for c in markers_df.columns:
markers_df[c] = zscore(markers_df[c])
# Average Z score for each cell
zs = markers_df.T.mean()
ax = plt.subplot(nrows, ncols, i + 1)
# Average is much more stable than coverage, we can use linear colormap here
plt.setp(ax, xticks=[], yticks=[])
# Plot zscores scatter plot with 2 segments colormap blue-white-red
cmap = LinearSegmentedColormap.from_list(name='zscore',
colors=[(0, 'darkblue'), ((0 - np.min(zs)) / (np.max(zs) - np.min(zs)), 'white'), (1, 'red')])
sc = ax.scatter(xs, ys, s=5, c=zs, cmap=cmap, edgecolor='none', alpha=1)
# sc = ax.scatter(xs, ys, s=5, c=zs, cmap=plt.cm.seismic, edgecolor='none', alpha=1)
plt.colorbar(sc)
plt.title(f'Cluster {cluster}')
# plt.xlabel('tSNE axis 1')
# plt.ylabel('tSNE axis 2')
print('t-SNE based Z-SCORE visualizations for markers, mean z-score for 100 top markers')
with PdfPages(os.path.join(figures_path, f'tsne_diff_markers_100.pdf')) as pdf:
show_top_markers_z(normdf, tsne_coords['tsne1'], tsne_coords['tsne2'], markers_with_genes, clusters, 15, 100)
pdf.savefig()
print('t-SNE based Z-SCORE visualizations for markers, z-score for 1 top marker')
t = normdf
top_markers_1 = get_top_markers(markers_with_genes, n_clusters, top=1)
top_markers_map = {}
for i, row in top_markers_1.iterrows():
top_markers_map[str(row['cluster'])] = row['peak']
with PdfPages(os.path.join(figures_path, 'tsne_diff_markers_1.pdf')) as pdf:
regions_plot(top_markers_map, coveragedf, tsne_coords['tsne1'], tsne_coords['tsne2'],
factors, clusters, True)
pdf.savefig()
cluster_peaks_path = os.path.join(OUTPUT_DIR, 'markers')
! mkdir -p {cluster_peaks_path}
print('Cleanup peaks_clusters', cluster_peaks_path)
for f in glob.glob(f'{cluster_peaks_path}/markers_*.bed'):
os.remove(f)
mlap_max = (-np.log10(markers.loc[markers['adjusted_p_value'] != 0]['adjusted_p_value'])).max()
print('BED scoring as -log10 adjusted pval')
print('Max of -log10 adjusted pval', mlap_max)
for c in set(clusters):
bed_file = os.path.join(cluster_peaks_path, f'markers_{c}.bed')
markers_cluster = markers.loc[markers['cluster'] == c].sort_values(
['log2_fold_change'], ascending=False).iloc[::-1]
markers_cluster.index = range(len(markers_cluster))
print('Writing cluster', c, 'differential peaks to', bed_file)
with open(bed_file, 'w') as bed:
for i in range(len(markers_cluster)):
peak = markers_cluster['peak'][i]
ap = markers_cluster['adjusted_p_value'][i]
mlap = -np.log10(ap) if ap != 0.0 else mlap_max
line = '{}\t{}\t{}\t.\n'.format(
re.sub(':|-', '\t', peak),
c,
mlap)
bed.write(line)
print('Done')
Preprocess data for single cell explorer https://ctlab.github.io/SCE
def export_to_cse(df, clusters_df, tsne_coords, umap_coords, top_markers,
sce_path, token, name, public, organism):
print('SCE folder', sce_path)
# Sanity check indexes
assert np.array_equal(tsne_coords.index, umap_coords.index)
assert np.array_equal(tsne_coords.index, df.columns)
assert np.array_equal(tsne_coords.index, df.columns)
assert np.array_equal(tsne_coords.index, df.columns)
assert np.array_equal(clusters_df.index, df.columns)
clusters = clusters_df['cluster']
print('Processing', 'dataset.json')
with open(os.path.join(sce_path, 'dataset.json'), 'w') as f:
f.write(json.dumps({
'token': token,
'public': public,
'name': name,
'organism': organism,
'cells': df.shape[1]
}))
print('Processing', 'plot_data.json')
fields = {
"tSNE_1": {
"type": "numeric",
"range": [
min(tsne_coords.loc[df.columns.values]['tsne1']),
max(tsne_coords.loc[df.columns.values]['tsne1'])
]
},
"tSNE_2": {
"type": "numeric",
"range": [
min(tsne_coords.loc[df.columns.values]['tsne2']),
max(tsne_coords.loc[df.columns.values]['tsne2'])
]
},
"UMAP_1": {
"type": "numeric",
"range": [
min(umap_coords.loc[df.columns.values]['umap1']),
max(umap_coords.loc[df.columns.values]['umap1'])
]
},
"UMAP_2": {
"type": "numeric",
"range": [
min(umap_coords.loc[df.columns.values]['umap2']),
max(umap_coords.loc[df.columns.values]['umap2'])
]
},
"Cluster": {
"type": "factor",
"levels": [str(c) for c in set(clusters)]
},
"Age": {
"type": "factor",
"levels": list(FACTORS_MAP.values())
},
"nUmi": {
"type": "numeric",
"range": [
min(df.sum()),
max(df.sum()),
]
}
}
data = pd.DataFrame({
"tSNE_1": tsne_coords.loc[df.columns.values]['tsne1'].tolist(),
"tSNE_2": tsne_coords.loc[df.columns.values]['tsne2'].tolist(),
"UMAP_1": umap_coords.loc[df.columns.values]['umap1'].tolist(),
"UMAP_2": umap_coords.loc[df.columns.values]['umap2'].tolist(),
"Cluster": [str(c) for c in clusters_df.loc[df.columns.values]['cluster']],
"Age": [FACTORS_MAP[FACTOR_FUNCTION(bc)] for bc in df.columns],
"nUmi": df.sum().tolist(),
"_row": list(df.columns)
}).to_dict('records')
annotations = {
"tsne_Cluster_centers": {
"type": "text",
"value": "Cluster",
"coords": [
"tSNE_1",
"tSNE_2"
],
"data": [
{
"Cluster": str(c),
"tSNE_1": float(np.mean(tsne_coords.loc[df.columns.values].values[
np.flatnonzero(clusters_df.loc[df.columns.values]['cluster'] == c), 0])),
"tSNE_2": float(np.mean(tsne_coords.loc[df.columns.values].values[
np.flatnonzero(clusters_df.loc[df.columns.values]['cluster'] == c), 1])),
"Text": str(c)
} for c in set(clusters)
]
},
}
with open(os.path.join(sce_path, 'plot_data.json'), 'w') as f:
f.write(json.dumps({
"fields": fields,
"data": data,
"annotations": annotations,
}))
# This file simply contains gene names, cell barcodes/names and total UMI per cell.
# This file must reflect row and column names of matrix data.h5 which contains expression data.
print('Processing', 'exp_data.json')
with open(os.path.join(sce_path, 'exp_data.json'), 'w') as f:
f.write(json.dumps({
"genes": list(df.index.values),
"barcodes": list(df.columns.values),
"totalCounts": df.sum(axis=0).astype(int).tolist()
}))
print('Processing', 'data.h5')
! rm {sce_path}/data.h5
# Fix missing locks
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
# Don't use pandas to_hdf5 because of unused overhead.
# IMPORTANT: transpose matrix because of different order!
# Column-major order is used by Fortran, Matlab, R, and most underlying core linear algebra libraries (BLAS).
# Row-major ordering is sometimes called “C” style ordering and column-major ordering “Fortran” style.
# Python/NumPy refers to the orderings in array flags as C_CONTIGUOUS and F_CONTIGUOUS, respectively.
# https://cran.r-project.org/web/packages/reticulate/vignettes/arrays.html
expdf = df.astype(int).clip(upper=1) # Clip coverage to 0-1 for better visualization
with h5py.File(os.path.join(sce_path, 'data.h5'), 'w') as hf:
hf.create_dataset("expression/mat",
data=expdf.T.values, # Column-major ordering!
compression="gzip", compression_opts=9,
dtype='i4') # int4 is required here for SCE, see https://github.com/ctlab/SCE/issues/4
print('Processing', 'markers.json')
# Take into account only 100 top markers
with open(os.path.join(sce_path, 'markers.json'), 'w') as f:
f.write(json.dumps({
"Cluster": [
{
'X': row['gene'],
'p_val': row['p_value'],
'p_val_adj': row['adjusted_p_value'],
'avg_logFC': row['log2_fold_change'],
'pct.1': row['norm_mean_cluster'],
'pct.2': row['norm_mean_others'],
'cluster': str(row['cluster']),
'gene': row['peak'],
'distance': row['distance']
} for index, row in top_markers.iterrows()
]
}))
print('Done')
sce_path = os.path.join(OUTPUT_DIR, 'sce')
! mkdir -p {sce_path}
export_to_cse(coveragedf.loc[peaks_filter], clusters_df, tsne_coords, umap_coords,
top_markers=get_top_markers(markers_with_genes, n_clusters, top=100),
sce_path=sce_path,
token='2019_scatacseq_human3vs3',
name='Single cell ATAC-Seq 3vs3',
public=True,
organism='hg')
clusters10xpath = CLUSTERS_FILE
clusters10xdf = pd.read_csv(clusters10xpath, sep=',')
clusters10xdf['Cluster'] = clusters10xdf['Cluster'].astype(int) - 1 # Clusters start with 1 in 10x
clusters10xdf[FACTOR] = [FACTOR_FUNCTION(bc) for bc in clusters10xdf['Barcode']]
# display(clusters10xdf.head())
print('Total clusters', len(set(clusters10xdf['Cluster'])))
print('Size of clusters analysis')
t = clusters10xdf.copy()
t['counts'] = np.ones(len(t))
t.rename(columns={'Cluster': 'cluster'}, inplace=True)
t.index = t['Barcode']
print('Summary by', FACTOR, FACTORS_MAP)
display(t[[FACTOR, 'counts']].groupby([FACTOR]).sum())
clusters_sizes(t[['cluster', 'counts', FACTOR]], 'counts')
plt.show()
clusters_factors(t[['cluster', 'counts', FACTOR]], 'counts', FACTORS_MAP)
plt.show()
# Cleanup memory
del t
gc.collect()
print('Cell Ranger ATAC original T-SNE visualization')
tsne10xpath = TSNE_FILE
tsne10xdf = pd.read_csv(tsne10xpath, sep=',')
mergeddf = pd.merge(left=tsne10xdf,
right=clusters10xdf,
left_on='Barcode', right_on='Barcode')
plot_colored(mergeddf[['TSNE-1', 'TSNE-2']].values, mergeddf['Cluster'],
clusters=True,
show_centers=True,
size=20, alpha=0.5)
plt.show()
print('tSNE on LSA normalized vs', FACTOR, FACTORS_MAP)
plot_colored(mergeddf[['TSNE-1', 'TSNE-2']].values, clusters10xdf[FACTOR], clusters=True, size=20, alpha=0.01)
plt.show()
print('sc-atacseq-explorer clusters into Cell Ranger ATAC coordinates')
mergeddf = pd.merge(pd.DataFrame({'Barcode': tsne_coords.index, 'Cluster': clusters}),
right=tsne10xdf,
left_on='Barcode', right_on='Barcode')
print('tSNE on LSA normalized vs Cell Ranger ATAC clusters')
plot_colored(mergeddf[['TSNE-1', 'TSNE-2']].values,
mergeddf['Cluster'],
clusters=True,
show_centers=True,
size=20, alpha=0.5)
plt.show()
print('Clusters from Cell Ranger ATAC into sc-atacseq-explorer coordinates')
mergeddf = pd.merge(pd.DataFrame({'Barcode': tsne_coords.index,
'tsne1': tsne_coords['tsne1'],
'tsne2': tsne_coords['tsne2']}),
right=clusters10xdf,
left_on='Barcode', right_on='Barcode')
print('tSNE on LSA normalized vs Cell Ranger ATAC clusters')
plot_colored(mergeddf[['tsne1', 'tsne2']].values,
mergeddf['Cluster'],
clusters=True,
show_centers=True,
size=20, alpha=0.5)
plt.show()
print('Clusters10xfd', clusters10xdf.shape)
print('marker_regions_peaks', len(marker_regions_peaks))
print('tsne_coords', tsne_coords.shape)
print('factors', len(factors))
print('coveragedf', coveragedf.shape)
print('Visualize Cell RangerATAC clusters signal')
cells = set(tsne_coords.index)
common_barcodes = [c for c in clusters10xdf['Barcode'] if c in cells]
clusters10xdf_common = clusters10xdf.loc[[c in cells for c in clusters10xdf['Barcode']]]
coveragedf_common = coveragedf[common_barcodes]
tsne_coords_common = tsne_coords.loc[common_barcodes]
factors_common = [FACTORS_MAP[FACTOR_FUNCTION(c)] for c in common_barcodes]
print('Analysing REGIONS on interest of 10x clusters')
with PdfPages(os.path.join(figures_path, 'tsne_markers_10x.pdf')) as pdf:
regions_plot(marker_regions_peaks, coveragedf_common,
tsne_coords_common['tsne1'], tsne_coords_common['tsne2'],
factors_common, clusters10xdf_common['Cluster'], True)
pdf.savefig()
# Cleanup
del coveragedf_common
gc.collect()